Birnbaum Michael E, Berry Richard, Hsiao Yu-Shan, Chen Zhenjun, Shingu-Vazquez Miguel A, Yu Xiaoling, Waghray Deepa, Fischer Suzanne, McCluskey James, Rossjohn Jamie, Walz Thomas, Garcia K Christopher
Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; Program in Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305;
Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17576-81. doi: 10.1073/pnas.1420936111. Epub 2014 Nov 24.
αβ T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3εγ, CD3εδ, and CD3ζζ dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR-CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR-CD3 complex. Small-angle X-ray scattering of the soluble TCR-CD3εδ complex reveals the CD3εδ ECDs to sit underneath the TCR α-chain. The observed arrangement is consistent with EM images of the entire TCR-CD3 integral membrane complex, in which the CD3εδ and CD3εγ subunits were situated underneath the TCR α-chain and TCR β-chain, respectively. Interestingly, the TCR-CD3 transmembrane complex bound to peptide-MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR-CD3 complex, and provides a conceptual framework for the TCR activation mechanism.
αβ T细胞受体(TCR)激活对T细胞功能起着至关重要的作用。然而,TCR本身并不具备信号结构域。相反,TCR通过非共价键与一个保守的多亚基信号传导装置——CD3复合物相连,该复合物由CD3εγ、CD3εδ和CD3ζζ二聚体组成。TCR与抗原的结合如何触发CD3激活,以及CD3细胞外结构域(ECD)在组装好的TCR-CD3复合物中发挥何种结构作用仍不清楚。在此,我们采用两种互补的结构方法来深入了解TCR-CD3复合物的整体组织架构。可溶性TCR-CD3εδ复合物的小角X射线散射显示,CD3εδ ECD位于TCR α链下方。观察到的这种排列与整个TCR-CD3整合膜复合物的电子显微镜图像一致,在该图像中,CD3εδ和CD3εγ亚基分别位于TCR α链和TCR β链下方。有趣的是,与肽-主要组织相容性复合体(pMHC)结合的TCR-CD3跨膜复合物是一个二聚体,其中两个TCR从由CD3 ECD以及TCR和CD3跨膜结构域组成的中央核心向外突出。这种排列方式提示了一种潜在的依赖配体的TCR信号二聚化机制。总体而言,我们的数据增进了我们对TCR-CD3复合物分子组织的理解,并为TCR激活机制提供了一个概念框架。