Departamento de Química Orgánica I, Universidad del País Vasco , Manuel Lardizábal 3, 20018-San Sebastián, Spain.
J Am Chem Soc. 2014 Dec 24;136(51):17869-81. doi: 10.1021/ja510603w. Epub 2014 Dec 9.
Catalytic and asymmetric Michael reactions constitute very powerful tools for the construction of new C-C bonds in synthesis, but most of the reports claiming high selectivity are limited to some specific combinations of nucleophile/electrophile compound types, and only few successful methods deal with the generation of all-carbon quaternary stereocenters. A contribution to solve this gap is presented here based on chiral bifunctional Brønsted base (BB) catalysis and the use of α'-oxy enones as enabling Michael acceptors with ambivalent H-bond acceptor/donor character, a yet unreported design element for bidentate enoate equivalents. It is found that the Michael addition of a range of enolizable carbonyl compounds that have previously demonstrated challenging (i.e., α-substituted 2-oxindoles, cyanoesters, oxazolones, thiazolones, and azlactones) to α'-oxy enones can afford the corresponding tetrasubstituted carbon stereocenters in high diastereo- and enantioselectivity in the presence of standard BB catalysts. Experiments show that the α'-oxy ketone moiety plays a key role in the above realizations, as parallel reactions under identical conditions but using the parent α,β-unsaturated ketones or esters instead proceed sluggish and/or with poor stereoselectivity. A series of trivial chemical manipulations of the ketol moiety in adducts can produce the corresponding carboxy, aldehyde, and ketone compounds under very mild conditions, giving access to a variety of enantioenriched densely functionalized building blocks containing a fully substituted carbon stereocenter. A computational investigation to rationalize the mode of substrate activation and the reaction stereochemistry is also provided, and the proposed models are compared with related systems in the literature.
催化不对称迈克尔反应是合成中构建新 C-C 键的非常有力的工具,但大多数声称高选择性的报道仅限于亲核试剂/亲电试剂化合物类型的某些特定组合,只有少数成功的方法涉及全碳季碳中心的生成。这里提出了一种基于手性双功能 Brønsted 碱 (BB) 催化和使用α'-氧烯酮作为使能迈克尔受体的方法来解决这一差距,α'-氧烯酮具有双重烯醇化物等价物中未见报道的设计元素,具有 ambivalent H-bond acceptor/donor 特征。研究发现,在标准 BB 催化剂存在下,一系列以前证明具有挑战性的可烯醇化羰基化合物(即α-取代的 2-氧吲哚、氰基酯、噁唑酮、噻唑酮和氮杂内酯)与α'-氧烯酮的迈克尔加成可以以高非对映选择性和对映选择性得到相应的四取代碳立体中心。实验表明,α'-氧酮部分在上述实现中起着关键作用,因为在相同条件下但使用母体α,β-不饱和酮或酯进行的平行反应进行得缓慢且/或立体选择性差。在加成物中对酮醇部分进行一系列简单的化学操作,可以在非常温和的条件下生成相应的羧酸、醛和酮化合物,从而获得各种含有全取代碳立体中心的手性富集的多官能化构建块。还提供了对底物活化模式和反应立体化学进行合理化的计算研究,并将提出的模型与文献中的相关体系进行了比较。