Dordet-Frisoni Emilie, Sagné Eveline, Baranowski Eric, Breton Marc, Nouvel Laurent Xavier, Blanchard Alain, Marenda Marc Serge, Tardy Florence, Sirand-Pugnet Pascal, Citti Christine
University of Melbourne, Department of Veterinary Science, Werribee, Victoria, Australia.
mBio. 2014 Nov 25;5(6):e01958. doi: 10.1128/mBio.01958-14.
Horizontal gene transfer (HGT) is a main driving force of bacterial evolution and innovation. This phenomenon was long thought to be marginal in mycoplasmas, a large group of self-replicating bacteria characterized by minute genomes as a result of successive gene losses during evolution. Recent comparative genomic analyses challenged this paradigm, but the occurrence of chromosomal exchanges had never been formally addressed in mycoplasmas. Here, we demonstrated the conjugal transfer of large chromosomal regions within and among ruminant mycoplasma species, with the incorporation of the incoming DNA occurring by homologous recombination into the recipient chromosome. By combining classical mating experiments with high-throughput next-generation sequencing, we documented the transfer of almost every position of the mycoplasma chromosome. Mycoplasma conjugation relies on the occurrence of an integrative conjugative element (ICE) in at least one parent cell. While ICE propagates horizontally from ICE-positive to ICE-negative cells, chromosomal transfers (CTs) occurred in the opposite direction, from ICE-negative to ICE-positive cells, independently of ICE movement. These findings challenged the classical mechanisms proposed for other bacteria in which conjugative CTs are driven by conjugative elements, bringing into the spotlight a new means for rapid mycoplasma innovation. Overall, they radically change our current views concerning the evolution of mycoplasmas, with particularly far-reaching implications given that over 50 species are human or animal pathogens.
Horizontal gene transfers (HGT) shape bacterial genomes and are key contributors to microbial diversity and innovation. One main mechanism involves conjugation, a process that allows the simultaneous transfer of significant amounts of DNA upon cell-to-cell contact. Recognizing and deciphering conjugal mechanisms are thus essential in understanding the impact of gene flux on bacterial evolution. We addressed this issue in mycoplasmas, the smallest and simplest self-replicating bacteria. In these organisms, HGT was long thought to be marginal. We showed here that nearly every position of the Mycoplasma agalactiae chromosome could be transferred via conjugation, using an unconventional mechanism. The transfer involved DNA blocks containing up to 80 genes that were incorporated into the host chromosome by homologous recombination. These findings radically change our views concerning mycoplasma evolution and adaptation with particularly far-reaching implications given that over 50 species are human or animal pathogens.
水平基因转移(HGT)是细菌进化和创新的主要驱动力。长期以来,这种现象被认为在支原体中处于边缘地位,支原体是一大类自我复制的细菌,由于在进化过程中连续的基因丢失,其基因组微小。最近的比较基因组分析对这一范式提出了挑战,但染色体交换的发生在支原体中从未得到正式研究。在这里,我们展示了反刍动物支原体物种内部和之间大的染色体区域的接合转移,进入的DNA通过同源重组整合到受体染色体中。通过将经典的交配实验与高通量的下一代测序相结合,我们记录了支原体染色体几乎每个位置的转移。支原体接合依赖于至少一个亲代细胞中存在整合性接合元件(ICE)。当ICE从ICE阳性细胞水平传播到ICE阴性细胞时,染色体转移(CTs)以相反的方向发生,即从ICE阴性细胞到ICE阳性细胞,且独立于ICE的移动。这些发现挑战了为其他细菌提出的经典机制,在其他细菌中,接合性CTs是由接合元件驱动的,这使一种新的支原体快速创新方式受到关注。总体而言,它们从根本上改变了我们目前关于支原体进化的观点,鉴于超过50种支原体是人类或动物病原体,其影响尤为深远。
水平基因转移(HGT)塑造细菌基因组,是微生物多样性和创新的关键因素。一种主要机制涉及接合,这一过程允许在细胞间接触时同时转移大量DNA。因此,识别和解读接合机制对于理解基因流动对细菌进化的影响至关重要。我们在支原体中解决了这个问题,支原体是最小且最简单的自我复制细菌。在这些生物体中,长期以来HGT被认为处于边缘地位。我们在此表明,无乳支原体染色体的几乎每个位置都可以通过一种非常规机制通过接合转移。这种转移涉及包含多达80个基因的DNA片段,这些片段通过同源重组整合到宿主染色体中。这些发现从根本上改变了我们关于支原体进化和适应的观点,鉴于超过50种支原体是人类或动物病原体,其影响尤为深远。