Finn Roderick Nigel, Chauvigné François, Hlidberg Jón Baldur, Cutler Christopher P, Cerdà Joan
Department of Biology, University of Bergen, Bergen, Norway; Institute of Marine Research, Bergen, Norway.
Department of Biology, University of Bergen, Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, CSIC, Barcelona, Spain.
PLoS One. 2014 Nov 26;9(11):e113686. doi: 10.1371/journal.pone.0113686. eCollection 2014.
A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.
水生生物适应陆地生活的一个主要生理障碍是在空气环境中脱水。然而,现存四足动物的泥盆纪祖先克服了这一障碍,但解决这一水分问题的特定分子机制的起源在很大程度上仍然未知。在这里,我们表明,一个古老的水通道蛋白基因簇在肉鳍鱼类谱系中特异性进化,随后分化为AQP2、-5或-6的旁系同源形式,以介导现存四足动物的水分保持。为了确定这些特化基因组特征的起源,我们将无颌和有颌脊椎动物的水通道蛋白测序与131个后口动物基因组中>2000个转录本的广泛分类群组装相结合,并基于贝叶斯推断开发了一个模型,该模型将它们的趋同根源追溯到基础后生动物和原核生物的茎亚科。这种方法揭示了在所研究的每个谱系中水通道蛋白的意外多样性,并表明脊椎动物超家族由17类水通道蛋白(Aqp0 - Aqp16)组成。与现代四足动物水分保持相关的最古老直系同源基因可追溯到腔棘鱼中一组三个类似aqp2的基因,它们可能通过无颌祖先中存在的一个类似aqp0的基因的复制在>5亿年前出现。在海七鳃鳗中,我们表明aqp0首先出现在一个由一个新的aqp14旁系同源基因和一个融合的aqp01基因组成的原簇中。为了证实这些发现,我们对五个同线核受体亚家族进行了系统发育分析,这些分析与广泛的基因组重排观察结果一起,支持了辐鳍鱼纲中祖先类似aqp2的直系同源基因的同时丢失。因此,我们得出结论,肉鳍鱼类特异性水通道蛋白基因簇的分化允许了促进四足动物陆地适应的水分保持机制的进化。