Suppr超能文献

从转录因子的三维模型预测DNA结合基序;鉴定TLX3调控的基因。

Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes.

作者信息

Pujato Mario, Kieken Fabien, Skiles Amanda A, Tapinos Nikos, Fiser Andras

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.

Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA Macromolecular Therapeutics Development, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.

出版信息

Nucleic Acids Res. 2014 Dec 16;42(22):13500-12. doi: 10.1093/nar/gku1228. Epub 2014 Nov 26.

Abstract

Proper cell functioning depends on the precise spatio-temporal expression of its genetic material. Gene expression is controlled to a great extent by sequence-specific transcription factors (TFs). Our current knowledge on where and how TFs bind and associate to regulate gene expression is incomplete. A structure-based computational algorithm (TF2DNA) is developed to identify binding specificities of TFs. The method constructs homology models of TFs bound to DNA and assesses the relative binding affinity for all possible DNA sequences using a knowledge-based potential, after optimization in a molecular mechanics force field. TF2DNA predictions were benchmarked against experimentally determined binding motifs. Success rates range from 45% to 81% and primarily depend on the sequence identity of aligned target sequences and template structures, TF2DNA was used to predict 1321 motifs for 1825 putative human TF proteins, facilitating the reconstruction of most of the human gene regulatory network. As an illustration, the predicted DNA binding site for the poorly characterized T-cell leukemia homeobox 3 (TLX3) TF was confirmed with gel shift assay experiments. TLX3 motif searches in human promoter regions identified a group of genes enriched in functions relating to hematopoiesis, tissue morphology, endocrine system and connective tissue development and function.

摘要

细胞的正常功能取决于其遗传物质精确的时空表达。基因表达在很大程度上受序列特异性转录因子(TFs)的控制。我们目前关于TFs在何处以及如何结合并相互作用以调控基因表达的知识并不完整。一种基于结构的计算算法(TF2DNA)被开发出来以识别TFs的结合特异性。该方法构建与DNA结合的TFs的同源模型,并在分子力学力场中优化后,使用基于知识的势能评估所有可能DNA序列的相对结合亲和力。TF2DNA的预测结果以实验确定的结合基序为基准进行验证。成功率在45%至81%之间,主要取决于比对的目标序列与模板结构的序列同一性。TF2DNA被用于预测1825个人类假定TF蛋白的1321个基序,有助于重建大部分人类基因调控网络。作为例证,通过凝胶迁移实验证实了对特征不明的T细胞白血病同源盒3(TLX3)TF的预测DNA结合位点。在人类启动子区域搜索TLX3基序发现了一组在造血、组织形态、内分泌系统以及结缔组织发育和功能相关功能中富集的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/081d/4267649/bad04dbbc5a8/gku1228fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验