Suppr超能文献

单细胞内部:利用先进光学和纳米材料进行定量分析

Inside single cells: quantitative analysis with advanced optics and nanomaterials.

作者信息

Cui Yi, Irudayaraj Joseph

机构信息

Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):387-407. doi: 10.1002/wnan.1321. Epub 2014 Nov 27.

Abstract

Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity. To obtain quantitative information (e.g., molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis. Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis.

摘要

单细胞探索为检查与构成生物学中心法则的机制和异质性相关的分子及事件提供了一个独特的窗口。大量核酸、蛋白质、代谢物和小分子参与在给定时间点确定和微调单个细胞的状态与功能。先进的光学平台和纳米工具为以单分子精度探测细胞内成分提供了巨大机遇,同时也是调节单细胞活性的有前景的工具。要在完整细胞内获得定量信息(如分子数量、动力学和化学计量学),以可比的时空分辨率进行观测是一项挑战。对于单细胞研究,检测方法和生物相容性都是关键因素,因为它们决定了可行性,尤其是在考虑活细胞分析时。尽管相当一部分单细胞方法依赖专业知识和昂贵仪器,但鉴于单细胞分析对生命科学的影响,我们期望其信息含量和意义将超过成本。

相似文献

1
Inside single cells: quantitative analysis with advanced optics and nanomaterials.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):387-407. doi: 10.1002/wnan.1321. Epub 2014 Nov 27.
2
Spectral wide-field microscopic fluorescence resonance energy transfer imaging in live cells.
J Biomed Opt. 2015 Aug;20(8):86011. doi: 10.1117/1.JBO.20.8.086011.
3
Analysis of live cell images: Methods, tools and opportunities.
Methods. 2017 Feb 15;115:65-79. doi: 10.1016/j.ymeth.2017.02.007. Epub 2017 Feb 27.
4
Advanced microscopy of microbial cells.
Adv Biochem Eng Biotechnol. 2011;124:21-54. doi: 10.1007/10_2010_83.
5
Differential interferometric particle tracking on the subnanometer- and submillisecond-scale.
Opt Express. 2013 Mar 25;21(6):7362-72. doi: 10.1364/OE.21.007362.
6
Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue.
Opt Express. 2012 Aug 27;20(18):19697-707. doi: 10.1364/OE.20.019697.
7
Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging.
Rev Sci Instrum. 2015 Dec;86(12):126102. doi: 10.1063/1.4937477.
8
Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):266-81. doi: 10.1002/wnan.1300. Epub 2014 Oct 9.
9
Challenges in long-term imaging and quantification of single-cell dynamics.
Nat Biotechnol. 2016 Nov 8;34(11):1137-1144. doi: 10.1038/nbt.3713.
10

引用本文的文献

2
Opto-thermophoretic fiber tweezers.
Nanophotonics. 2019 Mar;8(3):475-485. doi: 10.1515/nanoph-2018-0226. Epub 2019 Feb 12.
5
Epigenetic Toxicity of Trichloroethylene: A Single-Molecule Perspective.
Toxicol Res (Camb). 2016;5(2):641-650. doi: 10.1039/C5TX00454C. Epub 2016 Jan 27.
7
Toward precision medicine of breast cancer.
Theor Biol Med Model. 2016 Feb 29;13:7. doi: 10.1186/s12976-016-0035-4.
8
Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation.
ACS Nano. 2016 Mar 22;10(3):3132-43. doi: 10.1021/acsnano.6b00142. Epub 2016 Feb 24.
9
Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging.
ACS Nano. 2015 Dec 22;9(12):11924-32. doi: 10.1021/acsnano.5b04451. Epub 2015 Nov 2.
10
Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy.
Nucleic Acids Res. 2015 Mar 31;43(6):3046-55. doi: 10.1093/nar/gkv098. Epub 2015 Mar 9.

本文引用的文献

2
NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks.
Nucleic Acids Res. 2014 Jun;42(10):6365-79. doi: 10.1093/nar/gku296. Epub 2014 Apr 20.
4
Quantitative imaging of single mRNA splice variants in living cells.
Nat Nanotechnol. 2014 Jun;9(6):474-80. doi: 10.1038/nnano.2014.73. Epub 2014 Apr 20.
6
Single-molecule dynamics of enhanceosome assembly in embryonic stem cells.
Cell. 2014 Mar 13;156(6):1274-1285. doi: 10.1016/j.cell.2014.01.062.
8
Shedding new light on lipid functions with CARS and SRS microscopy.
Biochim Biophys Acta. 2014 Aug;1841(8):1120-9. doi: 10.1016/j.bbalip.2014.02.003. Epub 2014 Feb 25.
9
The promise of single-cell sequencing.
Nat Methods. 2014 Jan;11(1):25-7. doi: 10.1038/nmeth.2769.
10
Single-molecule tracking of the transcription cycle by sub-second RNA detection.
Elife. 2014;3:e01775. doi: 10.7554/eLife.01775. Epub 2014 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验