Pellizzaro Anthoni, Clochard Thibault, Planchet Elisabeth, Limami Anis M, Morère-Le Paven Marie-Christine
Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, 2 Boulevard Lavoisier, F-49045 Angers, France.
INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 42 rue Georges Morel, F-49071 Beaucouzé, France.
Physiol Plant. 2015 Jun;154(2):256-69. doi: 10.1111/ppl.12314. Epub 2014 Dec 26.
Nitrate transporters received little attention to legumes probably because these species are able to adapt to N starvation by developing biological N2 fixation. Still it is important to study nitrate transport systems in legumes because nitrate intervenes as a signal in regulation of nodulation probably through nitrate transporters. The aim of this work is to achieve a molecular characterization of nitrate transporter 2 (NRT2) and NAR2 (NRT3) families to allow further work that would unravel their involvement in nitrate transport and signaling. Browsing the latest version of the Medicago truncatula genome annotation (v4 version) revealed three putative NRT2 members that we have named MtNRT2.1 (Medtr4g057890.1), MtNRT2.2 (Medtr4g057865.1) and MtNRT2.3 (Medtr8g069775.1) and two putative NAR2 members we named MtNAR2.1 (Medtr4g104730.1) and MtNAR2.2 (Medtr4g104700.1). The regulation and the spatial expression profiles of MtNRT2.1, the coincidence of its expression with that of MtNAR2.1 and MtNAR2.2 and the size of the encoded protein with 12 transmembrane (TM) spanning regions strongly support the idea that MtNRT2.1 is a nitrate transporter with a major contribution to the high-affinity transport system (HATS), while a very low level of expression characterized MtNRT2.2. Unlike MtNRT2.1, MtNRT2.3 showed a lower level of expression in the root system but was expressed in the shoots and in the nodules thus suggesting an involvement of the encoded protein in nitrate transport inside the plant and/or in nitrate signaling pathways controlling post-inoculation processes that govern nodule functioning.
硝酸盐转运蛋白在豆科植物中很少受到关注,可能是因为这些物种能够通过发展生物固氮作用来适应氮饥饿。然而,研究豆科植物中的硝酸盐转运系统仍然很重要,因为硝酸盐可能通过硝酸盐转运蛋白作为调节结瘤的信号。这项工作的目的是对硝酸盐转运蛋白2(NRT2)和NAR2(NRT3)家族进行分子特征分析,以便开展进一步的研究,揭示它们在硝酸盐转运和信号传导中的作用。浏览最新版的蒺藜苜蓿基因组注释(v4版本)发现了三个假定的NRT2成员,我们将其命名为MtNRT2.1(Medtr4g057890.1)、MtNRT2.2(Medtr4g057865.1)和MtNRT2.3(Medtr8g069775.1),以及两个假定的NAR2成员,我们将其命名为MtNAR2.1(Medtr4g104730.1)和MtNAR2.2(Medtr4g104700.1)。MtNRT2.1的调控和空间表达谱、其与MtNAR2.1和MtNAR2.2表达的一致性以及编码蛋白具有12个跨膜(TM)区域的大小,有力地支持了MtNRT2.1是一种对高亲和力转运系统(HATS)有主要贡献的硝酸盐转运蛋白的观点,而MtNRT2.2的表达水平非常低。与MtNRT2.1不同,MtNRT2.3在根系中的表达水平较低,但在地上部分和根瘤中表达,因此表明编码的蛋白质参与植物体内的硝酸盐转运和/或参与控制接种后调节根瘤功能过程的硝酸盐信号通路。