Suppr超能文献

一种用于在全基因组关联研究中探究单核苷酸多态性(SNP)相互作用的模型。

A model to investigate SNPs' interaction in GWAS studies.

作者信息

Cocchi Enrico, Drago Antonio, Fabbri Chiara, Serretti Alessandro

机构信息

Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via Ugo Foscolo 7, Bologna, Italy.

出版信息

J Neural Transm (Vienna). 2015 Jan;122(1):145-53. doi: 10.1007/s00702-014-1341-9. Epub 2014 Nov 29.

Abstract

Genome-wide association studies (GWAS) are able to identify the role of individual SNPs in influencing a phenotype. Nevertheless, such analysis is unable to explain the biological complexity of several diseases. We elaborated an algorithm that starting from genes in molecular pathways implicated in a phenotype is able to identify SNP-SNP interaction's role in association with the phenotype. The algorithm is based on three steps. Firstly, it identifies the biological pathways (gene ontology) in which the genes under analysis play a role (GeneMANIA). Secondly, it identifies the group of SNPs that best fits the phenotype (and covariates) under analysis, not considering individual SNP regression coefficients but fitting the regression for the group itself. Finally, it operates an analysis of SNP interactions for each possible couple of SNPs within the group. The sensitivity and specificity of our algorithm was validated in simulated datasets (HapGen and Simulate Phenotypes programs). The impact on efficiency deriving from changes in the number of SNPs/patients under analysis, linkage disequilibrium and minor allele frequency thresholds was analyzed. Our algorithm showed a strong stability throughout all analysis operated, resulting in an overall sensitivity of 81.67 % and a specificity of 98.35 %. We elaborated a stable algorithm that may detect SNPs interactions, especially those effects that pass undetected in classical GWAS. This method may contribute to face the two relevant limitations of GWAS: lack of biological informative power and amount of time needed for the analysis.

摘要

全基因组关联研究(GWAS)能够确定单个单核苷酸多态性(SNP)在影响表型方面的作用。然而,这种分析无法解释几种疾病的生物学复杂性。我们精心设计了一种算法,该算法从与某一表型相关的分子途径中的基因出发,能够确定SNP-SNP相互作用与该表型关联中的作用。该算法基于三个步骤。首先,它识别所分析基因在其中发挥作用的生物学途径(基因本体)(GeneMANIA)。其次,它识别最符合所分析表型(及协变量)的SNP组,不考虑单个SNP的回归系数,而是对该组本身进行回归拟合。最后,它对该组内每对可能的SNP进行SNP相互作用分析。我们算法的敏感性和特异性在模拟数据集(HapGen和Simulate Phenotypes程序)中得到了验证。分析了所分析的SNP/患者数量变化、连锁不平衡和次要等位基因频率阈值变化对效率的影响。我们的算法在所有进行的分析中都表现出很强的稳定性,总体敏感性为81.67%,特异性为98.35%。我们精心设计了一种稳定的算法,该算法可能检测到SNP相互作用,尤其是那些在经典GWAS中未被检测到的效应。这种方法可能有助于应对GWAS的两个相关局限性:缺乏生物学信息能力和分析所需的时间量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验