Suppr超能文献

一种在核心家庭中纳入最优P值阈值算法的复杂疾病多单核苷酸多态性关联测试。

A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.

作者信息

Wang Yi-Ting, Sung Pei-Yuan, Lin Peng-Lin, Yu Ya-Wen, Chung Ren-Hua

机构信息

Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan.

Department of Medical Science, National Tsing Hua University, Hsin-Chu, Taiwan.

出版信息

BMC Genomics. 2015 May 15;16(1):381. doi: 10.1186/s12864-015-1620-3.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis is how to effectively select a subset of SNPs with promising association signals from the SNP set.

RESULTS

We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis and identified MACROD2-AS1 with genome-wide significance (p-value=2.5×10(-6)).

CONCLUSIONS

Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.

摘要

背景

全基因组关联研究(GWAS)已成为识别与复杂疾病相关的单核苷酸多态性(SNP)的常用方法。由于复杂疾病是由多个基因的联合作用引起的,而单个基因或SNP的作用较小,因此考虑多个SNP联合作用的方法可能比检测单个SNP更有效。多SNP分析旨在基于一个SNP集进行关联检测,该SNP集通常根据生物学知识(如基因或通路)定义,可能只包含对疾病有影响的部分SNP。因此,多SNP分析面临的一个挑战是如何从SNP集中有效地选择一组具有潜在关联信号的SNP子集。

结果

我们开发了最优P值阈值家系不平衡检验(OPTPDT)。OPTPDT使用一般的核心家庭。采用可变P值阈值算法来确定用于选择SNP子集的最优P值阈值。使用置换程序来评估检验的显著性。我们通过模拟验证了OPTPDT具有正确的I型错误率。我们的效能研究表明,OPTPDT比PLINK中的基于集的检验、多SNP FBAT检验和基于P值的检验GATES更有效。我们将OPTPDT应用于一个基于家系的自闭症GWAS数据集进行基于基因的关联分析,并鉴定出具有全基因组显著性(P值 = 2.5×10(-6))的MACROD2-AS1。

结论

我们的模拟结果表明,OPTPDT是一种有效且强大的检验方法。OPTPDT将有助于基于基因或通路的关联分析。该方法非常适合对现有GWAS数据集进行二次分析,这可能会识别出一组对疾病有联合作用的SNP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a05/4433014/41b9d1e08bdc/12864_2015_1620_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验