Suppr超能文献

突变激活的FGFR3通过阻止分化软骨细胞中SOX9的下调来损害软骨内骨生长。

Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes.

作者信息

Zhou Zi-Qiang, Ota Sara, Deng Chuxia, Akiyama Haruhiko, Hurlin Peter J

机构信息

Shriners Hospitals for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA.

Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.

出版信息

Hum Mol Genet. 2015 Mar 15;24(6):1764-73. doi: 10.1093/hmg/ddu594. Epub 2014 Nov 28.

Abstract

Fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the control of endochondral ossification, and bone growth and mutations that cause hyperactivation of FGFR3 are responsible for a collection of developmental disorders that feature poor endochondral bone growth. FGFR3 is expressed in proliferating chondrocytes of the cartilaginous growth plate but also in chondrocytes that have exited the cell cycle and entered the prehypertrophic phase of chondrocyte differentiation. Achondroplasia disorders feature defects in chondrocyte proliferation and differentiation, and the defects in differentiation have generally been considered to be a secondary manifestation of altered proliferation. By initiating a mutant activated knockin allele of FGFR3 (FGFR3K650E) that causes Thanatophoric Dysplasia Type II (TDII) specifically in prehypertrophic chondrocytes, we show that mutant FGFR3 induces a differentiation block at this stage independent of any changes in proliferation. The differentiation block coincided with persistent expression of SOX9, the master regulator of chondrogenesis, and reducing SOX9 dosage allowed chondrocyte differentiation to proceed and significantly improved endochondral bone growth in TDII. These findings suggest that a proliferation-independent and SOX9-dependent differentiation block is a key driving mechanism responsible for poor endochondral bone growth in achondroplasia disorders caused by mutations in FGFR3.

摘要

成纤维细胞生长因子受体3(FGFR3)在软骨内骨化、骨骼生长的控制中起关键作用,导致FGFR3过度激活的突变是一系列以软骨内骨生长不良为特征的发育障碍的原因。FGFR3在软骨生长板的增殖软骨细胞中表达,但也在已退出细胞周期并进入软骨细胞分化前肥大阶段的软骨细胞中表达。软骨发育不全症的特征是软骨细胞增殖和分化存在缺陷,而分化缺陷通常被认为是增殖改变的次要表现。通过构建一种特异性在肥大前软骨细胞中导致II型致死性侏儒症(TDII)的FGFR3突变激活敲入等位基因(FGFR3K650E),我们发现突变型FGFR3在此阶段诱导了一个分化阻滞,而与增殖的任何变化无关。该分化阻滞与软骨形成的主要调节因子SOX9的持续表达一致,降低SOX9的剂量可使软骨细胞分化继续进行,并显著改善TDII中的软骨内骨生长。这些发现表明,增殖非依赖性且依赖SOX9的分化阻滞是FGFR3突变导致的软骨发育不全症中软骨内骨生长不良的关键驱动机制。

相似文献

1
Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes.
Hum Mol Genet. 2015 Mar 15;24(6):1764-73. doi: 10.1093/hmg/ddu594. Epub 2014 Nov 28.
2
Disruption of a Sox9-β-catenin circuit by mutant Fgfr3 in thanatophoric dysplasia type II.
Hum Mol Genet. 2012 Nov 1;21(21):4628-44. doi: 10.1093/hmg/dds305. Epub 2012 Jul 26.
3
HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia.
Hum Mol Genet. 2016 Oct 1;25(19):4227-4243. doi: 10.1093/hmg/ddw255. Epub 2016 Aug 9.
5
Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation.
Int J Biochem Cell Biol. 2018 Feb;95:17-26. doi: 10.1016/j.biocel.2017.12.008. Epub 2017 Dec 11.
7
FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway.
Hum Mol Genet. 2009 Jan 15;18(2):227-40. doi: 10.1093/hmg/ddn339. Epub 2008 Oct 15.
8
Delayed bone age due to a dual effect of FGFR3 mutation in Achondroplasia.
Bone. 2010 Nov;47(5):905-15. doi: 10.1016/j.bone.2010.07.020. Epub 2010 Jul 29.
10
An activating Fgfr3 mutation affects trabecular bone formation via a paracrine mechanism during growth.
Hum Mol Genet. 2012 Jun 1;21(11):2503-13. doi: 10.1093/hmg/dds065. Epub 2012 Feb 24.

引用本文的文献

1
Advances in the mechanism and therapies of achondroplasia.
Genes Dis. 2024 Sep 24;12(4):101436. doi: 10.1016/j.gendis.2024.101436. eCollection 2025 Jul.
5
Embryonic cranial cartilage defects in the Fgfr3 mouse model of achondroplasia.
Anat Rec (Hoboken). 2023 Sep 25. doi: 10.1002/ar.25327.
6
Candidate genes for obstructive sleep apnea in non-syndromic children with craniofacial dysmorphisms - a narrative review.
Front Pediatr. 2023 Jun 27;11:1117493. doi: 10.3389/fped.2023.1117493. eCollection 2023.
9
Integrated RNA-Seq Analysis Uncovers the Potential Mechanism of the "Kidney Governing Bones" Theory of TCM.
Evid Based Complement Alternat Med. 2022 Mar 30;2022:7044775. doi: 10.1155/2022/7044775. eCollection 2022.

本文引用的文献

1
Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12097-102. doi: 10.1073/pnas.1302703111. Epub 2014 Aug 4.
2
The chondrocytic journey in endochondral bone growth and skeletal dysplasia.
Birth Defects Res C Embryo Today. 2014 Mar;102(1):52-73. doi: 10.1002/bdrc.21060.
3
Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice.
Sci Transl Med. 2013 Sep 18;5(203):203ra124. doi: 10.1126/scitranslmed.3006247.
4
Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions.
Nature. 2013 Mar 21;495(7441):375-8. doi: 10.1038/nature11940. Epub 2013 Mar 13.
5
A far-upstream (-70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration.
Nucleic Acids Res. 2013 Apr;41(8):4459-69. doi: 10.1093/nar/gkt140. Epub 2013 Feb 28.
6
Development of the endochondral skeleton.
Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a008334. doi: 10.1101/cshperspect.a008334.
8
Disruption of a Sox9-β-catenin circuit by mutant Fgfr3 in thanatophoric dysplasia type II.
Hum Mol Genet. 2012 Nov 1;21(21):4628-44. doi: 10.1093/hmg/dds305. Epub 2012 Jul 26.
10
Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes.
Dev Cell. 2012 Mar 13;22(3):597-609. doi: 10.1016/j.devcel.2011.12.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验