Suppr超能文献

使用带有回归调整的亚分类法估计营养标签使用的平均治疗效果。

Estimating the average treatment effects of nutritional label use using subclassification with regression adjustment.

作者信息

Lopez Michael J, Gutman Roee

机构信息

1 Department of Mathematics and Computer Science, Skidmore College, Saratoga Springs, NY, USA.

2 Department of Biostatistics, Brown University, Providence, RI, USA.

出版信息

Stat Methods Med Res. 2017 Apr;26(2):839-864. doi: 10.1177/0962280214560046. Epub 2014 Nov 28.

Abstract

Propensity score methods are common for estimating a binary treatment effect when treatment assignment is not randomized. When exposure is measured on an ordinal scale (i.e. low-medium-high), however, propensity score inference requires extensions which have received limited attention. Estimands of possible interest with an ordinal exposure are the average treatment effects between each pair of exposure levels. Using these estimands, it is possible to determine an optimal exposure level. Traditional methods, including dichotomization of the exposure or a series of binary propensity score comparisons across exposure pairs, are generally inadequate for identification of optimal levels. We combine subclassification with regression adjustment to estimate transitive, unbiased average causal effects across an ordered exposure, and apply our method on the 2005-2006 National Health and Nutrition Examination Survey to estimate the effects of nutritional label use on body mass index.

摘要

当治疗分配并非随机进行时,倾向得分方法常用于估计二元治疗效果。然而,当暴露是以有序尺度(即低-中-高)来衡量时,倾向得分推断需要扩展,而这方面受到的关注有限。对于有序暴露,可能感兴趣的估计量是每对暴露水平之间的平均治疗效果。利用这些估计量,可以确定最佳暴露水平。传统方法,包括对暴露进行二分法或对暴露对进行一系列二元倾向得分比较,通常不足以确定最佳水平。我们将亚分类与回归调整相结合,以估计有序暴露中的可传递、无偏平均因果效应,并将我们的方法应用于2005 - 2006年国家健康和营养检查调查,以估计营养标签使用对体重指数的影响。

相似文献

1
Estimating the average treatment effects of nutritional label use using subclassification with regression adjustment.
Stat Methods Med Res. 2017 Apr;26(2):839-864. doi: 10.1177/0962280214560046. Epub 2014 Nov 28.
2
Causal inference with a quantitative exposure.
Stat Methods Med Res. 2016 Feb;25(1):315-35. doi: 10.1177/0962280212452333. Epub 2012 Jun 22.
3
Simultaneous record linkage and causal inference with propensity score subclassification.
Stat Med. 2018 Oct 30;37(24):3533-3546. doi: 10.1002/sim.7911. Epub 2018 Aug 1.
4
5
Estimating the effect of treatment on binary outcomes using full matching on the propensity score.
Stat Methods Med Res. 2017 Dec;26(6):2505-2525. doi: 10.1177/0962280215601134. Epub 2015 Sep 1.
6
Subclassification estimation of the weighted average treatment effect.
Biom J. 2021 Dec;63(8):1706-1728. doi: 10.1002/bimj.202000310. Epub 2021 Jul 16.
7
Introduction to propensity scores.
Respirology. 2014 Jul;19(5):625-35. doi: 10.1111/resp.12312. Epub 2014 May 29.
8
Causal inference of latent classes in complex survey data with the estimating equation framework.
Stat Med. 2020 Feb 10;39(3):207-219. doi: 10.1002/sim.8382. Epub 2019 Dec 17.
9
A machine learning compatible method for ordinal propensity score stratification and matching.
Stat Med. 2021 Mar 15;40(6):1383-1399. doi: 10.1002/sim.8846. Epub 2020 Dec 22.
10
Estimation of causal effects of binary treatments in unconfounded studies.
Stat Med. 2015 Nov 20;34(26):3381-98. doi: 10.1002/sim.6532. Epub 2015 May 26.

本文引用的文献

1
Matching With Doses in an Observational Study of a Media Campaign Against Drug Abuse.
J Am Stat Assoc. 2001 Dec;96(456):1245-1253. doi: 10.1198/016214501753381896.
2
A tutorial on propensity score estimation for multiple treatments using generalized boosted models.
Stat Med. 2013 Aug 30;32(19):3388-414. doi: 10.1002/sim.5753. Epub 2013 Mar 18.
4
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
Stat Med. 2012 Jul 10;31(15):1572-81. doi: 10.1002/sim.4496. Epub 2012 Feb 23.
5
Generalized propensity score for estimating the average treatment effect of multiple treatments.
Stat Med. 2012 Mar 30;31(7):681-97. doi: 10.1002/sim.4168. Epub 2011 Feb 24.
6
Matching methods for causal inference: A review and a look forward.
Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313.
7
On the limitations of comparative effectiveness research.
Stat Med. 2010 Aug 30;29(19):1991-5; discussion 1996-7. doi: 10.1002/sim.3960.
9
Food label use and awareness of nutritional information and recommendations among persons with chronic disease.
Am J Clin Nutr. 2009 Nov;90(5):1351-7. doi: 10.3945/ajcn.2009.27684. Epub 2009 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验