Suppr超能文献

使用倾向得分完全匹配法估计治疗对二元结局的影响。

Estimating the effect of treatment on binary outcomes using full matching on the propensity score.

作者信息

Austin Peter C, Stuart Elizabeth A

机构信息

1 Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

2 Institute of Health Management, Policy and Evaluation, University of Toronto, Ontario, Canada.

出版信息

Stat Methods Med Res. 2017 Dec;26(6):2505-2525. doi: 10.1177/0962280215601134. Epub 2015 Sep 1.

Abstract

Many non-experimental studies use propensity-score methods to estimate causal effects by balancing treatment and control groups on a set of observed baseline covariates. Full matching on the propensity score has emerged as a particularly effective and flexible method for utilizing all available data, and creating well-balanced treatment and comparison groups. However, full matching has been used infrequently with binary outcomes, and relatively little work has investigated the performance of full matching when estimating effects on binary outcomes. This paper describes methods that can be used for estimating the effect of treatment on binary outcomes when using full matching. It then used Monte Carlo simulations to evaluate the performance of these methods based on full matching (with and without a caliper), and compared their performance with that of nearest neighbour matching (with and without a caliper) and inverse probability of treatment weighting. The simulations varied the prevalence of the treatment and the strength of association between the covariates and treatment assignment. Results indicated that all of the approaches work well when the strength of confounding is relatively weak. With stronger confounding, the relative performance of the methods varies, with nearest neighbour matching with a caliper showing consistently good performance across a wide range of settings. We illustrate the approaches using a study estimating the effect of inpatient smoking cessation counselling on survival following hospitalization for a heart attack.

摘要

许多非实验性研究使用倾向得分方法,通过在一组观察到的基线协变量上平衡治疗组和对照组来估计因果效应。基于倾向得分的完全匹配已成为一种特别有效且灵活的方法,用于利用所有可用数据,并创建平衡良好的治疗组和比较组。然而,完全匹配在二元结局研究中很少使用,并且相对较少的工作研究了在估计二元结局效应时完全匹配的性能。本文描述了在使用完全匹配时可用于估计治疗对二元结局效应的方法。然后使用蒙特卡罗模拟来评估基于完全匹配(有卡尺和没有卡尺)的这些方法的性能,并将它们的性能与最近邻匹配(有卡尺和没有卡尺)以及治疗逆概率加权的性能进行比较。模拟改变了治疗的患病率以及协变量与治疗分配之间的关联强度。结果表明,当混杂强度相对较弱时,所有方法都表现良好。随着混杂强度增加,这些方法的相对性能会有所不同,带卡尺的最近邻匹配在广泛的设置中始终表现出良好的性能。我们使用一项估计住院戒烟咨询对心脏病发作住院后生存率影响的研究来说明这些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6091/5753848/d2c4a1d83840/10.1177_0962280215601134-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验