Foley Nicole M, Thong Vu Dinh, Soisook Pipat, Goodman Steven M, Armstrong Kyle N, Jacobs David S, Puechmaille Sébastien J, Teeling Emma C
School of Biology & Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
Mol Biol Evol. 2015 Feb;32(2):313-33. doi: 10.1093/molbev/msu329. Epub 2014 Nov 29.
The phylogenetic and taxonomic relationships among the Old World leaf-nosed bats (Hipposideridae) and the closely related horseshoe bats (Rhinolophidae) remain unresolved. In this study, we generated a novel approximately 10-kb molecular data set of 19 nuclear exon and intron gene fragments for 40 bat species to elucidate the phylogenetic relationships within the families Rhinolophidae and Hipposideridae. We estimated divergence times and explored potential reasons for any incongruent phylogenetic signal. We demonstrated the effects of outlier taxa and genes on phylogenetic reconstructions and compared the relative performance of intron and exon data to resolve phylogenetic relationships. Phylogenetic analyses produced a well-resolved phylogeny, supporting the familial status of Hipposideridae and demonstrated the paraphyly of the largest genus, Hipposideros. A fossil-calibrated timetree and biogeographical analyses estimated that Rhinolophidae and Hipposideridae diverged in Africa during the Eocene approximately 42 Ma. The phylogram, the timetree, and a unique retrotransposon insertion supported the elevation of the subtribe Rhinonycterina to family level and which is diagnosed herein. Comparative analysis of diversification rates showed that the speciose genera Rhinolophus and Hipposideros underwent diversification during the Mid-Miocene Climatic Optimum. The intron versus exon analyses demonstrated the improved nodal support provided by introns for our optimal tree, an important finding for large-scale phylogenomic studies, which typically rely on exon data alone. With the recent outbreak of Middle East respiratory syndrome, caused by a novel coronavirus, the study of these species is urgent as they are considered the natural reservoir for emergent severe acute respiratory syndrome (SARS)-like coronaviruses. It has been shown that host phylogeny is the primary factor that determines a virus's persistence, replicative ability, and can act as a predictor of new emerging disease. Therefore, this newly resolved phylogeny can be used to direct future assessments of viral diversity and to elucidate the origin and development of SARS-like coronaviruses in mammals.
旧大陆叶鼻蝠科(菊头蝠科)与亲缘关系密切的菊头蝠科之间的系统发育和分类关系仍未解决。在本研究中,我们为40种蝙蝠生成了一个新的约10 kb的分子数据集,该数据集包含19个核外显子和内含子基因片段,以阐明菊头蝠科和叶鼻蝠科内部的系统发育关系。我们估计了分歧时间,并探讨了系统发育信号不一致的潜在原因。我们展示了异常类群和基因对系统发育重建的影响,并比较了内含子和外显子数据在解析系统发育关系方面的相对表现。系统发育分析产生了一个解析度良好的系统发育树,支持叶鼻蝠科的科地位,并证明了最大的属——菊头蝠属的并系性。一个化石校准的时间树和生物地理分析估计,菊头蝠科和叶鼻蝠科在始新世期间于非洲分化,大约在4200万年前。系统发育树、时间树和一个独特的反转录转座子插入支持将犀菊头蝠亚族提升到科级水平,本文对此进行了诊断。多样化速率的比较分析表明,种类繁多的菊头蝠属和叶鼻蝠属在中新世气候适宜期经历了多样化。内含子与外显子分析表明,内含子为我们的最优树提供了更好的节点支持,这对于通常仅依赖外显子数据的大规模系统发育基因组学研究来说是一个重要发现。随着由新型冠状病毒引起的中东呼吸综合征最近爆发,对这些物种的研究变得紧迫,因为它们被认为是新兴的严重急性呼吸综合征(SARS)样冠状病毒的天然宿主。研究表明,宿主系统发育是决定病毒持久性、复制能力的主要因素,并且可以作为新出现疾病的预测指标。因此,这个新解析的系统发育树可用于指导未来对病毒多样性的评估,并阐明哺乳动物中SARS样冠状病毒的起源和发展。