Souty Cécile, Turbelin Clément, Blanchon Thierry, Hanslik Thomas, Le Strat Yann, Boëlle Pierre-Yves
INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris F-75012, France ; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris F-75012, France.
INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris F-75012, France ; AP-HP, Hôpital Ambroise Paré, service de médecine interne, Boulogne-Billancourt F-92100, France ; Université Versailles Saint-Quentin-en-Yvelines, Versailles F-78000, France.
Popul Health Metr. 2014 Jul 26;12:19. doi: 10.1186/s12963-014-0019-8. eCollection 2014.
In primary care surveillance systems based on voluntary participation, biased results may arise from the lack of representativeness of the monitored population and uncertainty regarding the population denominator, especially in health systems where patient registration is not required.
Based on the observation of a positive association between number of cases reported and number of consultations by the participating general practitioners (GPs), we define several weighted incidence estimators using external information on consultation volume in GPs. These estimators are applied to data reported in a French primary care surveillance system based on voluntary GPs (the Sentinelles network) for comparison.
Depending on hypotheses for weight computations, relative changes in weekly national-level incidence estimates up to 3% for influenza, 6% for diarrhea, and 11% for varicella were observed. The use of consultation-weighted estimates led to bias reduction in the estimates. At the regional level (NUTS2 level - Nomenclature of Statistical Territorial Units Level 2), relative changes were even larger between incidence estimates, with changes between -40% and +55%. Using bias-reduced weights decreased variation in incidence between regions and increased spatial autocorrelation.
Post-stratification using external administrative data may improve incidence estimates in surveillance systems based on voluntary participation.
在基于自愿参与的基层医疗监测系统中,监测人群缺乏代表性以及人群分母存在不确定性可能会导致结果出现偏差,尤其是在无需患者注册的卫生系统中。
基于观察到的参与的全科医生(GP)报告的病例数与会诊数之间的正相关关系,我们使用关于全科医生会诊量的外部信息定义了几种加权发病率估计方法。将这些估计方法应用于法国一个基于全科医生自愿参与的基层医疗监测系统(哨兵网络)报告的数据进行比较。
根据权重计算的假设,观察到全国每周流感发病率估计值的相对变化高达3%,腹泻为6%,水痘为11%。使用会诊加权估计值可减少估计偏差。在区域层面(NUTS2级别 - 统计领土单位命名法第2级),发病率估计值之间的相对变化更大,变化范围在-40%至+55%之间。使用偏差减少权重可降低区域间发病率的差异并增加空间自相关性。
使用外部行政数据进行事后分层可能会改善基于自愿参与的监测系统中的发病率估计。