Souty Cécile, Boëlle Pierre-Yves
Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), F-75012, Paris, France.
Département de santé publique, AP-HP, Hôpital Saint-Antoine, F-75012, Paris, France.
BMC Med Res Methodol. 2016 Nov 15;16(1):156. doi: 10.1186/s12874-016-0260-x.
In surveillance networks based on voluntary participation of health-care professionals, there is little choice regarding the selection of participants' characteristics. External information about participants, for example local physician density, can help reduce bias in incidence estimates reported by the surveillance network.
There is an inverse association between the number of reported influenza-like illness (ILI) cases and local general practitioners (GP) density. We formulated and compared estimates of ILI incidence using this relationship. To compare estimates, we simulated epidemics using a spatially explicit disease model and their observation by surveillance networks with different characteristics: random, maximum coverage, largest cities, etc.
In the French practice-based surveillance network - the "Sentinelles" network - GPs reported 3.6% (95% CI [3;4]) less ILI cases as local GP density increased by 1 GP per 10,000 inhabitants. Incidence estimates varied markedly depending on scenarios for participant selection in surveillance. Yet accounting for change in GP density for participants allowed reducing bias. Applied on data from the Sentinelles network, changes in overall incidence ranged between 1.6 and 9.9%.
Local GP density is a simple measure that provides a way to reduce bias in estimating disease incidence in general practice. It can contribute to improving disease monitoring when it is not possible to choose the characteristics of participants.
在基于医疗保健专业人员自愿参与的监测网络中,参与者特征的选择余地很小。关于参与者的外部信息,例如当地医生密度,有助于减少监测网络报告的发病率估计中的偏差。
报告的流感样疾病(ILI)病例数与当地全科医生(GP)密度之间存在负相关关系。我们利用这种关系制定并比较了ILI发病率的估计值。为了比较估计值,我们使用空间明确的疾病模型模拟了疫情,并通过具有不同特征的监测网络进行观察:随机、最大覆盖范围、最大城市等。
在法国基于实践的监测网络——“哨兵”网络中,随着当地GP密度每增加1名/万居民,全科医生报告的ILI病例减少3.6%(95%置信区间[3;4])。发病率估计值因监测中参与者选择的情况而异。然而,考虑参与者的GP密度变化可以减少偏差。应用于“哨兵”网络的数据时,总体发病率的变化范围在1.6%至9.9%之间。
当地GP密度是一种简单的指标,为减少全科医疗中疾病发病率估计的偏差提供了一种方法。当无法选择参与者特征时,它有助于改善疾病监测。