Suppr超能文献

组织特异性翻译后修饰可实现促甲状腺激素的功能靶向。

Tissue-specific posttranslational modification allows functional targeting of thyrotropin.

作者信息

Ikegami Keisuke, Liao Xiao-Hui, Hoshino Yuta, Ono Hiroko, Ota Wataru, Ito Yuka, Nishiwaki-Ohkawa Taeko, Sato Chihiro, Kitajima Ken, Iigo Masayuki, Shigeyoshi Yasufumi, Yamada Masanobu, Murata Yoshiharu, Refetoff Samuel, Yoshimura Takashi

机构信息

Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.

Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell Rep. 2014 Nov 6;9(3):801-10. doi: 10.1016/j.celrep.2014.10.006. Epub 2014 Oct 30.

Abstract

Thyroid-stimulating hormone (TSH; thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.

摘要

促甲状腺激素(TSH;促甲状腺素)是一种由垂体分泌的糖蛋白。远侧部来源的TSH(PD-TSH)刺激甲状腺产生甲状腺激素(THs),而结节部来源的TSH(PT-TSH)作用于下丘脑以调节季节性生理和行为。然而,尚不清楚这两种TSH如何避免功能上的相互干扰。在此,我们表明这种调节是由组织特异性糖基化介导的。尽管PT-TSH释放到循环中,但它不会刺激甲状腺。已知PD-TSH具有硫酸化的双天线N-聚糖,并且硫酸化的TSH在肝脏中会迅速代谢。相比之下,PT-TSH具有唾液酸化的多分支N-聚糖;在循环中,它与免疫球蛋白或白蛋白形成大TSH复合物,导致其生物活性丧失。糖基化对于广泛的生物学过程至关重要。本报告证明了其参与防止体内信号分子的功能相互干扰。

相似文献

1
Tissue-specific posttranslational modification allows functional targeting of thyrotropin.
Cell Rep. 2014 Nov 6;9(3):801-10. doi: 10.1016/j.celrep.2014.10.006. Epub 2014 Oct 30.
5
Seasonal Rhythms: The Role of Thyrotropin and Thyroid Hormones.
Thyroid. 2018 Jan;28(1):4-10. doi: 10.1089/thy.2017.0186. Epub 2017 Oct 5.
6
Regulation of thyrotropin (TSH) bioactivity by TSH-releasing hormone and thyroid hormone.
Endocrinology. 1986 May;118(5):2125-30. doi: 10.1210/endo-118-5-2125.
9
Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.
Gen Comp Endocrinol. 2016 Feb 1;227:64-8. doi: 10.1016/j.ygcen.2015.05.009. Epub 2015 Jun 5.

引用本文的文献

1
Falsely Elevated Thyroid-Stimulating Hormone Level Due to Macro-TSH Interference: A Case Report.
Ann Lab Med. 2025 Jul 1;45(4):459-462. doi: 10.3343/alm.2025.0006. Epub 2025 Jun 19.
2
Non-human primate seasonal transcriptome atlas reveals seasonal changes in physiology and diseases.
Nat Commun. 2025 Apr 28;16(1):3906. doi: 10.1038/s41467-025-57994-1.
3
Transcriptomic landscape of hyperthyroidism in mice overexpressing thyroid-stimulating hormone.
iScience. 2024 Dec 10;28(1):111565. doi: 10.1016/j.isci.2024.111565. eCollection 2025 Jan 17.
4
Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine.
Cell Tissue Res. 2025 May;400(2):217-240. doi: 10.1007/s00441-024-03913-7. Epub 2024 Sep 12.
5
The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms.
Front Endocrinol (Lausanne). 2024 Aug 26;15:1443051. doi: 10.3389/fendo.2024.1443051. eCollection 2024.
6
Pituitary crosstalk with bone, adipose tissue and brain.
Nat Rev Endocrinol. 2023 Dec;19(12):708-721. doi: 10.1038/s41574-023-00894-5. Epub 2023 Sep 15.
8
Variation in responses to photoperiods and temperatures in Japanese medaka from different latitudes.
Zoological Lett. 2023 Jul 22;9(1):16. doi: 10.1186/s40851-023-00215-8.
9
Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis.
Ann N Y Acad Sci. 2023 Jul;1525(1):61-69. doi: 10.1111/nyas.15009. Epub 2023 May 18.

本文引用的文献

1
N-linked glycosylation modulates dimerization of protein disulfide isomerase family A member 2 (PDIA2).
FEBS J. 2013 Jan;280(1):233-43. doi: 10.1111/febs.12063. Epub 2012 Dec 14.
3
Falsely elevated thyroid-stimulating hormone (TSH) level due to macro-TSH.
Endocr J. 2009;56(3):435-40. doi: 10.1507/endocrj.k08e-361. Epub 2009 Apr 1.
4
Melatonin transmits photoperiodic signals through the MT1 melatonin receptor.
J Neurosci. 2009 Mar 4;29(9):2885-9. doi: 10.1523/JNEUROSCI.0145-09.2009.
5
Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women.
J Clin Endocrinol Metab. 2009 Mar;94(3):958-64. doi: 10.1210/jc.2008-2070. Epub 2008 Dec 30.
6
Glycodelin in reproductive endocrinology and hormone-related cancer.
Eur J Endocrinol. 2009 Feb;160(2):121-33. doi: 10.1530/EJE-08-0756. Epub 2008 Nov 27.
7
Involvement of thyrotropin in photoperiodic signal transduction in mice.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18238-42. doi: 10.1073/pnas.0808952105. Epub 2008 Nov 17.
8
Ancestral TSH mechanism signals summer in a photoperiodic mammal.
Curr Biol. 2008 Aug 5;18(15):1147-52. doi: 10.1016/j.cub.2008.06.076.
9
Thyrotrophin in the pars tuberalis triggers photoperiodic response.
Nature. 2008 Mar 20;452(7185):317-22. doi: 10.1038/nature06738.
10
Novel role of presenilins in maturation and transport of integrin beta 1.
Biochemistry. 2008 Mar 18;47(11):3370-8. doi: 10.1021/bi7014508. Epub 2008 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验