Korf Horst-Werner
Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.
Cell Tissue Res. 2025 May;400(2):217-240. doi: 10.1007/s00441-024-03913-7. Epub 2024 Sep 12.
This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.
本文着重介绍了光神经内分泌学和昼夜节律生物学这两个相互交织的学科的科学发展。光神经内分泌学专注于将光刺激转化为神经内分泌信号并用于节律同步的非视觉光感受器。最早在非哺乳类动物的松果复合体和大脑中描述的非视觉光感受器是亮度探测器。在松果体中,它们控制褪黑素的形成,褪黑素是高度保守的黑暗激素,每晚合成。具有光感受和神经内分泌能力的松果体细胞起着“光神经内分泌细胞”的作用。在成年哺乳动物中,控制松果体褪黑素生物合成和瞳孔反射的非视觉光感受器在松果体和大脑中并不存在,仅存在于视网膜内层。脑内光感受器调节季节性节律,如生殖周期。它们集中在室周器官、外侧隔器官和室旁器官中,是接触脑脊液的神经元。非视觉光感受器使用不同的光色素,如黑素视蛋白、视蛋白、副视蛋白、神经视蛋白和脊椎动物古老视蛋白。在确定了生物钟基因和分子生物钟机制后,昼夜节律生物学成为前沿研究,重点是节律产生。分子生物钟机制在每个有核细胞中滴答作响,如在哺乳动物中所示,它们驱动3000多个基因的表达,对细胞增殖和代谢的调节至关重要。哺乳动物的昼夜节律系统是分层组织的;中央节律发生器位于视交叉上核,它通过多种神经和神经内分泌途径带动外周昼夜节律振荡器。分子生物钟机制紊乱可能导致各种疾病,对这种相互作用的研究将建立一门新学科:昼夜节律医学。