Weber Britta, Tranfield Erin M, Höög Johanna L, Baum Daniel, Antony Claude, Hyman Tony, Verbavatz Jean-Marc, Prohaska Steffen
Zuse Institute Berlin, Berlin, Germany; Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany.
European Molecular Biology Laboratory, Heidelberg, Germany.
PLoS One. 2014 Dec 1;9(12):e113222. doi: 10.1371/journal.pone.0113222. eCollection 2014.
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
在连续切片电子断层扫描中追踪微管中心线,需要将微管跨切片拼接起来,即不同切片的线要对齐,端点要在切片边界处匹配,以在相邻切片间建立对应关系,并且相应的线要跨多个切片连接起来。我们提出了针对这些任务的计算方法:1)使用距离兼容性图计算初始对齐。2)然后用迭代最近点算法的概率变体计算精细对齐,我们通过在概率公式中引入周期随机变量对其进行扩展以处理线的方向。3)通过将匹配问题表述为马尔可夫随机场并使用置信传播计算最佳匹配来建立端点对应关系。置信传播一般不能保证收敛到最小值。不过,我们展示了如何通过最少的人工输入实现收敛。除了拼接微管中心线外,这种对应关系还用于变换和合并电子断层图像。我们将所提出的方法应用于秀丽隐杆线虫有丝分裂纺锤体、非洲爪蟾减数分裂纺锤体以及布氏锥虫皮层下微管阵列的样本。对于纺锤体样本,这些方法能够跨切片边界拼接微管,与专家的判断高度一致。然而,对于微管阵列,结果并不令人满意。对于某些实验,如纺锤体分析,所提出的方法可以取代专家手动追踪,从而只需合理的人工操作就能实现对长距离微管的分析。