Suppr超能文献

跨序列电子断层扫描的微管中心线自动拼接

Automated stitching of microtubule centerlines across serial electron tomograms.

作者信息

Weber Britta, Tranfield Erin M, Höög Johanna L, Baum Daniel, Antony Claude, Hyman Tony, Verbavatz Jean-Marc, Prohaska Steffen

机构信息

Zuse Institute Berlin, Berlin, Germany; Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany.

European Molecular Biology Laboratory, Heidelberg, Germany.

出版信息

PLoS One. 2014 Dec 1;9(12):e113222. doi: 10.1371/journal.pone.0113222. eCollection 2014.

Abstract

Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.

摘要

在连续切片电子断层扫描中追踪微管中心线,需要将微管跨切片拼接起来,即不同切片的线要对齐,端点要在切片边界处匹配,以在相邻切片间建立对应关系,并且相应的线要跨多个切片连接起来。我们提出了针对这些任务的计算方法:1)使用距离兼容性图计算初始对齐。2)然后用迭代最近点算法的概率变体计算精细对齐,我们通过在概率公式中引入周期随机变量对其进行扩展以处理线的方向。3)通过将匹配问题表述为马尔可夫随机场并使用置信传播计算最佳匹配来建立端点对应关系。置信传播一般不能保证收敛到最小值。不过,我们展示了如何通过最少的人工输入实现收敛。除了拼接微管中心线外,这种对应关系还用于变换和合并电子断层图像。我们将所提出的方法应用于秀丽隐杆线虫有丝分裂纺锤体、非洲爪蟾减数分裂纺锤体以及布氏锥虫皮层下微管阵列的样本。对于纺锤体样本,这些方法能够跨切片边界拼接微管,与专家的判断高度一致。然而,对于微管阵列,结果并不令人满意。对于某些实验,如纺锤体分析,所提出的方法可以取代专家手动追踪,从而只需合理的人工操作就能实现对长距离微管的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be10/4249889/d78cf8e46c1c/pone.0113222.g001.jpg

相似文献

1
Automated stitching of microtubule centerlines across serial electron tomograms.
PLoS One. 2014 Dec 1;9(12):e113222. doi: 10.1371/journal.pone.0113222. eCollection 2014.
2
Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography.
J Microsc. 2021 Oct;284(1):25-44. doi: 10.1111/jmi.13039. Epub 2021 Jul 9.
3
Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos.
J Struct Biol. 2012 May;178(2):129-38. doi: 10.1016/j.jsb.2011.12.004. Epub 2011 Dec 13.
4
Microtubule reorganization during female meiosis in .
Elife. 2021 Jun 11;10:e58903. doi: 10.7554/eLife.58903.
5
The segmentation of microtubules in electron tomograms using Amira.
Methods Mol Biol. 2014;1136:261-78. doi: 10.1007/978-1-4939-0329-0_12.
8
Quantification of three-dimensional spindle architecture.
Methods Cell Biol. 2018;145:45-64. doi: 10.1016/bs.mcb.2018.03.012.
9
A Switch in Microtubule Orientation during C. elegans Meiosis.
Curr Biol. 2018 Sep 24;28(18):2991-2997.e2. doi: 10.1016/j.cub.2018.07.012. Epub 2018 Sep 6.
10
Measuring microtubule polarity in spindles with second-harmonic generation.
Biophys J. 2014 Apr 15;106(8):1578-87. doi: 10.1016/j.bpj.2014.03.009.

引用本文的文献

1
Ultrastructure of the nebenkern during spermatogenesis in the praying mantid Hierodula membranacea.
PLoS One. 2023 Jul 27;18(7):e0285073. doi: 10.1371/journal.pone.0285073. eCollection 2023.
2
MCRS1 modulates the heterogeneity of microtubule minus-end morphologies in mitotic spindles.
Mol Biol Cell. 2023 Jan 1;34(1):ar1. doi: 10.1091/mbc.E22-08-0306-T. Epub 2022 Nov 9.
3
Microtubule reorganization during female meiosis in .
Elife. 2021 Jun 11;10:e58903. doi: 10.7554/eLife.58903.
4
Volume electron microscopy: analyzing the lung.
Histochem Cell Biol. 2021 Feb;155(2):241-260. doi: 10.1007/s00418-020-01916-3. Epub 2020 Sep 17.
5
Prior-Apprised Unsupervised Learning of Subpixel Curvilinear Features in Low Signal/Noise Images.
Biophys J. 2020 May 19;118(10):2458-2469. doi: 10.1016/j.bpj.2020.04.009. Epub 2020 Apr 19.
7
Electron tomography reveals aspects of spindle structure important for mechanical stability at metaphase.
Mol Biol Cell. 2020 Feb 1;31(3):184-195. doi: 10.1091/mbc.E19-07-0405. Epub 2019 Dec 11.
8
Soluble tubulin is significantly enriched at mitotic centrosomes.
J Cell Biol. 2019 Dec 2;218(12):3977-3985. doi: 10.1083/jcb.201902069. Epub 2019 Oct 21.
9
Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B.
Mol Biol Cell. 2019 Sep 1;30(19):2503-2514. doi: 10.1091/mbc.E19-01-0074. Epub 2019 Jul 24.
10
Flagellum couples cell shape to motility in .
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5916-E5925. doi: 10.1073/pnas.1722618115. Epub 2018 Jun 11.

本文引用的文献

1
Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei.
Elife. 2014;3:e01479. doi: 10.7554/eLife.01479. Epub 2014 Jan 21.
2
Conserved and divergent features of kinetochores and spindle microtubule ends from five species.
J Cell Biol. 2013 Feb 18;200(4):459-74. doi: 10.1083/jcb.201209154.
3
Cytokinesis in trypanosomes.
Cytoskeleton (Hoboken). 2012 Nov;69(11):931-41. doi: 10.1002/cm.21074. Epub 2012 Oct 1.
4
Elastic volume reconstruction from series of ultra-thin microscopy sections.
Nat Methods. 2012 Jun 10;9(7):717-20. doi: 10.1038/nmeth.2072.
5
Nucleation and transport organize microtubules in metaphase spindles.
Cell. 2012 Apr 27;149(3):554-64. doi: 10.1016/j.cell.2012.03.027.
6
Serial section registration of axonal confocal microscopy datasets for long-range neural circuit reconstruction.
J Neurosci Methods. 2012 Jun 15;207(2):200-10. doi: 10.1016/j.jneumeth.2012.03.002. Epub 2012 Mar 28.
7
The role of γ-tubulin in centrosomal microtubule organization.
PLoS One. 2012;7(1):e29795. doi: 10.1371/journal.pone.0029795. Epub 2012 Jan 10.
8
Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos.
J Struct Biol. 2012 May;178(2):129-38. doi: 10.1016/j.jsb.2011.12.004. Epub 2011 Dec 13.
9
Electron tomography reveals a flared morphology on growing microtubule ends.
J Cell Sci. 2011 Mar 1;124(Pt 5):693-8. doi: 10.1242/jcs.072967. Epub 2011 Feb 8.
10
Robust Point Set Registration Using Gaussian Mixture Models.
IEEE Trans Pattern Anal Mach Intell. 2011 Aug;33(8):1633-45. doi: 10.1109/TPAMI.2010.223. Epub 2010 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验