Frada Miguel José, Schatz Daniella, Farstey Viviana, Ossolinski Justin E, Sabanay Helena, Ben-Dor Shifra, Koren Ilan, Vardi Assaf
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
The Interuniversity Institute for Marine Sciences, H. Steinitz Marine Biology Laboratory, Eilat 88103, Israel.
Curr Biol. 2014 Nov 3;24(21):2592-7. doi: 10.1016/j.cub.2014.09.031. Epub 2014 Oct 23.
Marine viruses are recognized as a major driving force regulating phytoplankton community composition and nutrient cycling in the oceans. Yet, little is known about mechanisms that influence viral dispersal in aquatic systems, other than physical processes, and that lead to the rapid demise of large-scale algal blooms in the oceans. Here, we show that copepods, abundant migrating crustaceans that graze on phytoplankton, as well as other zooplankton can accumulate and mediate the transmission of viruses infecting Emiliania huxleyi, a bloom-forming coccolithophore that plays an important role in the carbon cycle. We detected by PCR that >80% of copepods collected during a North Atlantic E. huxleyi bloom carried E. huxleyi virus (EhV) DNA. We demonstrated by isolating a new infectious EhV strain from a copepod microbiome that these viruses are infectious. We further showed that EhVs can accumulate in high titers within zooplankton guts during feeding or can be adsorbed to their surface. Subsequently, EhV can be dispersed by detachment or via viral-dense fecal pellets over a period of 1 day postfeeding on EhV-infected algal cells, readily infecting new host populations. Intriguingly, the passage through zooplankton guts prolonged EhV's half-life of infectivity by 35%, relative to free virions in seawater, potentially enhancing viral transmission. We propose that zooplankton, swimming through topographically adjacent phytoplankton micropatches and migrating daily over large areas across physically separated water masses, can serve as viral vectors, boosting host-virus contact rates and potentially accelerating the demise of large-scale phytoplankton blooms.
海洋病毒被认为是调节海洋中浮游植物群落组成和营养循环的主要驱动力。然而,除了物理过程外,对于影响病毒在水生系统中传播的机制,以及导致海洋中大规模藻华迅速消亡的机制,我们知之甚少。在这里,我们表明,桡足类动物,即大量以浮游植物为食的迁徙甲壳类动物,以及其他浮游动物,可以积累并介导感染赫氏颗石藻的病毒的传播。赫氏颗石藻是一种形成藻华的颗石藻,在碳循环中起着重要作用。我们通过聚合酶链反应检测到,在北大西洋赫氏颗石藻藻华期间采集的桡足类动物中,超过80%携带赫氏颗石藻病毒(EhV)DNA。我们通过从桡足类动物微生物群中分离出一种新的传染性EhV毒株,证明了这些病毒具有传染性。我们进一步表明,EhV可以在摄食期间在浮游动物肠道内高滴度积累,或者吸附在它们的表面。随后,EhV可以在摄食感染EhV的藻类细胞后1天内通过脱离或通过富含病毒的粪便颗粒进行传播,很容易感染新的宿主群体。有趣的是,相对于海水中的游离病毒粒子,通过浮游动物肠道的传播使EhV的感染半衰期延长了35%,这可能增强了病毒的传播。我们提出,浮游动物游动穿过地形相邻的浮游植物微斑块,并每天在大面积的物理隔离水体中迁徙,可以作为病毒载体,提高宿主与病毒的接触率,并可能加速大规模浮游植物藻华的消亡。