Thomas Anna C, Williams Hywel, Setó-Salvia Núria, Bacchelli Chiara, Jenkins Dagan, O'Sullivan Mary, Mengrelis Konstantinos, Ishida Miho, Ocaka Louise, Chanudet Estelle, James Chela, Lescai Francesco, Anderson Glenn, Morrogh Deborah, Ryten Mina, Duncan Andrew J, Pai Yun Jin, Saraiva Jorge M, Ramos Fabiana, Farren Bernadette, Saunders Dawn, Vernay Bertrand, Gissen Paul, Straatmaan-Iwanowska Anna, Baas Frank, Wood Nicholas W, Hersheson Joshua, Houlden Henry, Hurst Jane, Scott Richard, Bitner-Glindzicz Maria, Moore Gudrun E, Sousa Sérgio B, Stanier Philip
Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK.
Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK.
Am J Hum Genet. 2014 Nov 6;95(5):611-21. doi: 10.1016/j.ajhg.2014.10.007.
Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.
智力残疾和小脑萎缩在大量遗传疾病中共同出现,并且经常与小头畸形和/或癫痫相关。在此,我们报告了在三个不相关的近亲家庭的七名受影响个体中发现的分选连接蛋白14(SNX14)的致病突变,这些个体表现为隐性遗传的中度至重度智力残疾、小脑共济失调、早发性小脑萎缩、感音神经性听力损失,以及面部特征逐渐变粗、相对巨头畸形和无癫痫发作的独特关联。我们使用纯合性定位和全外显子组测序在两个家庭中鉴定出一个纯合无义突变和一个框内多外显子缺失。在第三个家庭中,通过对SNX14进行桑格测序鉴定出一个纯合剪接位点突变,该家庭纯粹是根据表型相似性选择的。这一发现证实这些特征代表一种独特且可识别的综合征。SNX14编码一种含有Phox(PX)和G蛋白信号调节因子(RGS)结构域的细胞蛋白。加权基因共表达网络分析预测SNX14与参与细胞蛋白代谢和囊泡介导运输的基因高度共表达。所有三个突变要么直接影响PX结构域,要么降低SNX14水平,这意味着正常细胞功能丧失。这表现为在培养的成纤维细胞中观察到的细胞质空泡化增加。我们的研究结果表明SNX14在神经发育和功能中,特别是在小脑的发育和成熟中起重要作用。