Li Hailong, Wang Xiaowan, Zhang Nannan, Gottipati Manoj K, Parpura Vladimir, Ding Shinghua
Dalton Cardiovascular Research Center, Columbia, MO 65211, United States; Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States.
Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States.
Cell Calcium. 2014 Dec;56(6):457-66. doi: 10.1016/j.ceca.2014.09.008. Epub 2014 Sep 30.
Mitochondrial Ca(2+) plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca(2+) imaging is an important approach to understand mitochondrial Ca(2+) dynamics. Recently developed GCaMP genetically-encoded Ca(2+) indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca(2+) imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca(2+) dynamics in culture, revealing Ca(2+) uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca(2+) indicators, our results show that mitochondrial Ca(2+) uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca(2+) dynamics on cytosolic Ca(2+) changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca(2+) increase using mito-GCaMP5G and a synthetic organic Ca(2+) indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca(2+) signaling pathway, our results demonstrated that the mitochondrial Ca(2+) uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca(2+) dynamics as well as Ca(2+) interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.
线粒体钙(Ca²⁺)在细胞能量代谢和信号传导中发挥着关键的生理作用,其过载会导致包括神经疾病中神经元凋亡死亡在内的各种病理状况。活细胞线粒体Ca²⁺成像对于理解线粒体Ca²⁺动态变化是一种重要方法。最近开发的GCaMP基因编码Ca²⁺指示剂为高灵敏度/分辨率和细胞类型特异性的线粒体Ca²⁺成像提供了独特机会。在本研究中,我们实现了GCaMP5G/6s(线粒体-GCaMP5G/6s)的细胞特异性线粒体靶向,并使用双光子显微镜对培养中的星形胶质细胞和神经元线粒体Ca²⁺动态变化进行成像,揭示了这些细胞器对细胞刺激的Ca²⁺摄取机制。使用这些线粒体Ca²⁺指示剂,我们的结果表明,培养的星形胶质细胞和神经元中单个线粒体的线粒体Ca²⁺摄取分别在ATP和谷氨酸刺激后可见。我们进一步通过分别使用线粒体-GCaMP5G和合成有机Ca²⁺指示剂x-Rhod-1同时成像线粒体和胞质Ca²⁺增加情况,研究了培养的星形胶质细胞在ATP刺激后线粒体Ca²⁺动态变化对胞质Ca²⁺变化的依赖性。结合对Ca²⁺信号通路的分子干预,我们的结果表明,线粒体Ca²⁺摄取与肌醇1,4,5-三磷酸受体介导的内质网Ca²⁺释放以及G蛋白偶联受体的激活紧密相关。本研究提供了一种对线粒体Ca²⁺动态变化以及内质网与线粒体之间Ca²⁺相互作用进行成像的新方法,这与健康和疾病状态下的神经元及星形胶质细胞功能相关。