Nesic Jelena, Rtimi Sami, Laub Danièle, Roglic Goran M, Pulgarin Cesar, Kiwi John
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015, Lausanne, Switzerland; Faculty of Chemistry, University of Belgrade, Studentski trg 12, Belgrade, Serbia.
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-GPAO, Station 6, CH-1015, Lausanne, Switzerland.
Colloids Surf B Biointerfaces. 2014 Nov 1;123:593-9. doi: 10.1016/j.colsurfb.2014.09.060. Epub 2014 Oct 7.
This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NP's aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NP's. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study.
本研究提供了新的证据,证明在无光照射的情况下,TiO2-聚酯(以下简称TiO2-PES)上大肠杆菌数量减少的相关事件。通过透射电子显微镜(TEM)显示,TiO2纳米颗粒聚集体与大肠杆菌外脂多糖(LPS)层的扩散是细菌丧失可培养性的前提条件。在黑暗中30分钟内,TiO2聚集体与大肠杆菌细胞壁相互作用,在120分钟内导致TiO2-PES 5%TiO2样品上的细菌完全丧失可培养性。观察到细菌减少量随PES上TiO2负载量增加至5%而增加。与低强度模拟阳光照射下的运行相比,TiO2-PES在黑暗中的细菌消毒速度较慢。从TiO2单元在生理pH值下坍塌形成TiO2聚集体,随后与细菌表面发生静电相互作用的竞争角度,讨论了TiO2聚集体与大肠杆菌细胞壁之间的相互作用。TiO2-PES样品能够重复进行细菌灭活。这展现了实际应用的潜力。发现X射线光电子能谱(XPS)证据表明Ti4+还原为Ti3+,这有助于TiO2-PES与细菌细胞壁之间的氧化还原相互作用。深入了解了大肠杆菌细胞壁与TiO2纳米颗粒之间的相互作用机制。本研究报告了TiO2-PES表面的性质,如原子浓度百分比、TiO₂负载量、光吸收、表面电荷和晶体相。