Suppr超能文献

生物活性类黄酮的微生物生物转化。

Microbial biotransformation of bioactive flavonoids.

机构信息

School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, PR China; Department of Chemistry, Central South University, Changsha 410083, PR China.

Department of Chemistry, Central South University, Changsha 410083, PR China.

出版信息

Biotechnol Adv. 2015 Jan-Feb;33(1):214-223. doi: 10.1016/j.biotechadv.2014.10.012. Epub 2014 Nov 4.

Abstract

The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied.

摘要

生物活性类黄酮被认为是食物中最重要的植物化学物质,它们对人类有广泛的生物益处。微生物生物转化策略生产类黄酮引起了相当大的兴趣,因为它们可以产生自然界中不存在的新型类黄酮。在这篇综述中,我们总结了各种微生物生产和生物转化类黄酮的现有知识。微生物生物转化过程中的主要反应包括羟化、去羟化、O-甲基化、O-去甲基化、糖基化、去糖基化、脱氢、加氢、苯并-γ-吡喃系统 C 环裂解、环化和羰基还原。棒孢菌属、青霉菌属和曲霉菌属菌株非常适合生物转化类黄酮,它们可以以优异的产率进行几乎所有的反应。黑曲霉是黄酮类化合物生物转化中应用最广泛的微生物之一;例如,黑曲霉可以将黄烷酮转化为黄烷-4-醇、2'-羟基二氢查耳酮、黄酮、3-羟基黄酮、6-羟基黄烷酮和 4'-羟基黄酮。微生物对黄酮类化合物的羟化通常发生在 A 环上的邻位羟基和 B 环的 C-4'位置,微生物通常在 C-8 位置羟基化黄酮醇。微生物倾向于在 C-5、6 和 4'位置羟化黄烷酮;然而,对于prenylated flavanones,二羟化通常发生在prenyl 基团(A 环侧链)上的 C4α=C5α双键上。微生物通常在 B 环的 C-3'位置羟基化异黄酮。微生物将黄酮类化合物转化为 7-O-糖苷和 3-O-糖苷(当黄酮类化合物在 C-3 位置有一个羟基时)。微生物对多甲氧基黄酮的去甲基化倾向于发生在 B 环的 C-3'和 C-4'位置。多甲氧基黄烷酮和异黄酮在 C-7 和 C-4'位置去甲基化。黄酮醇的 O-甲基化发生在 C-3'和 C-4'位置,微生物在 C-6 位置 O-甲基化黄酮,在 A 环的羟基上 O-甲基化黄烷酮,通常发生在 A 环的羟基上。prenyl flavanones 在 prenyl 侧链处环化形成一个新的五元环连接到 A 环。查耳酮选择性地环化成黄烷酮。黄酮类化合物的加氢仅报道了查耳酮向二氢查耳酮的转化。黄酮类化合物的脱氢没有得到全面研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验