Kang Min-Yeong, Katz Ira, Sapoval Bernard
Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France.
Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, 78534 Jouy-en-Josas, France; Department of Mechanical Engineering, Lafayette College, Easton, PA 18042, USA.
Respir Physiol Neurobiol. 2015 Jan 1;205:109-19. doi: 10.1016/j.resp.2014.11.001. Epub 2014 Nov 7.
Oxygen capture in the lung results from the intimate dynamic interaction between the space- and time-dependent oxygen partial pressure that results from convection-diffusion and oxygen extraction from the alveolar gas and the space and time dependence of oxygen trapping by the red blood cells flowing in the capillaries. The complexity of the problem can, however, be reduced due to the fact that the systems obey different time scales: seconds for the gas phase transport and tenths of seconds for oxygen trapping by blood. This results first from a dynamical study of gas transport in a moving acinus and second from a new theory of dynamic oxygen trapping in the capillaries. The global solution can be found only through a self-consistent iterative approach linking the two systems. This has been accomplished and used to quantify oxygen capture in various situations: at rest, during exercise, ventilation-perfusion mismatching, high altitude and pulmonary edema.
肺部的氧气摄取源于对流扩散导致的随空间和时间变化的氧分压与肺泡气中氧气提取之间的密切动态相互作用,以及毛细血管中流动的红细胞对氧气捕获的空间和时间依赖性。然而,由于该系统遵循不同的时间尺度:气相传输为秒级,血液捕获氧气为十分之几秒,问题的复杂性可以降低。这首先源于对运动腺泡中气体传输的动力学研究,其次源于毛细血管中动态氧气捕获的新理论。只有通过将两个系统联系起来的自洽迭代方法才能找到全局解。这一点已经实现,并用于量化各种情况下的氧气摄取:静息时、运动时、通气-灌注不匹配时、高海拔和肺水肿时。