Rodríguez-Escudero Isabel, Fernández-Acero Teresa, Bravo Ignacio, Leslie Nicholas R, Pulido Rafael, Molina María, Cid Víctor J
Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRyCIS), Pza. Ramón y Cajal s/n, 28040 Madrid, Spain.
Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
Methods. 2015 May;77-78:172-9. doi: 10.1016/j.ymeth.2014.10.020. Epub 2014 Oct 25.
The PTEN phosphoinositide 3-phosphatase is a tumor suppressor commonly targeted by pathologic missense mutations. Subject to multiple complex layers of regulation, its capital role in cancer relies on its counteracting function of class I phosphoinositide 3-kinase (PI3K), a key feature in oncogenic signaling pathways. Precise assessment of the involvement of PTEN mutations described in the clinics in loss of catalytic activity requires either tedious in vitro phosphatase assays or in vivo experiments involving transfection into mammalian cell lines. Taking advantage of the versatility of the model organism Saccharomyces cerevisiae, we have developed different functional assays by reconstitution of the mammalian PI3K-PTEN switch in this lower eukaryote. This methodology is based on the fact that regulated PI3K expression in yeast cells causes conversion of PtdIns(4,5)P2 in PtdIns(3,4,5)P3 and co-expression of PTEN counteracts this effect. This can be traced by monitoring growth, given that PtdIns(4,5)P2 pools are essential for the yeast cell, or by using fluorescent reporters amenable for microscopy or flow cytometry. Here we describe the methodology and review its application to evaluate the functionality of PTEN mutations. We show that the technique is amenable to both directed and systematic structure-function relationship studies, and present an example of its use for the study of the recently discovered PTEN-L variant.
PTEN磷酸肌醇3-磷酸酶是一种肿瘤抑制因子,常成为病理性错义突变的靶点。由于受到多层复杂调控,它在癌症中的关键作用依赖于其对I类磷酸肌醇3-激酶(PI3K)的拮抗功能,这是致癌信号通路的一个关键特征。要精确评估临床中描述的PTEN突变对催化活性丧失的影响,要么进行繁琐的体外磷酸酶检测,要么进行涉及转染到哺乳动物细胞系的体内实验。利用模式生物酿酒酵母的多功能性,我们通过在这种低等真核生物中重建哺乳动物PI3K-PTEN开关,开发了不同的功能检测方法。该方法基于这样一个事实:酵母细胞中受调控的PI3K表达会导致磷脂酰肌醇-4,5-二磷酸(PtdIns(4,5)P2)转化为磷脂酰肌醇-3,4,5-三磷酸(PtdIns(3,4,5)P3),而PTEN的共表达会抵消这种效应。鉴于PtdIns(4,5)P2库对酵母细胞至关重要,这可以通过监测生长情况来追踪,或者使用适用于显微镜或流式细胞术的荧光报告基因来追踪。在这里,我们描述了该方法,并回顾了其在评估PTEN突变功能方面的应用。我们表明,该技术适用于定向和系统的结构-功能关系研究,并给出了其用于研究最近发现的PTEN-L变体的一个例子。