Suppr超能文献

视觉假体的有源共焦成像

Active confocal imaging for visual prostheses.

作者信息

Jung Jae-Hyun, Aloni Doron, Yitzhaky Yitzhak, Peli Eli

机构信息

Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

Department of Electro-Optics Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.

出版信息

Vision Res. 2015 Jun;111(Pt B):182-96. doi: 10.1016/j.visres.2014.10.023. Epub 2014 Nov 3.

Abstract

There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other "sensory substitution devices" that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and "see" only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system based on light-field imaging, we confirmed that the concept of a confocal de-cluttered image can be realized effectively.

摘要

针对盲人的假体视觉技术取得了令人鼓舞的进展,包括视网膜和皮层植入物,以及其他使用触觉或电刺激的“感官替代设备”。然而,它们都存在分辨率低、视野有限以及只能显示少数灰度级(动态范围有限)的问题,严重限制了它们的实用性。为了克服这些限制,图像处理或成像系统可以突出感兴趣的物体并抑制背景杂波。我们提出了一种基于光场技术的主动共焦成像系统,该系统将使任何视觉假体的盲人用户能够有效地扫描、聚焦并“看到”仅感兴趣的物体,同时抑制来自背景杂波的干扰。该系统使用光场传感器捕获三维场景信息,并仅显示其中包含物体的聚焦平面。在捕获共焦图像后,去杂波过程基于模糊差异去除杂波。在初步实验中,我们验证了基于共焦的背景杂波去除对低分辨率和有限动态范围模拟光幻视图像中物体识别的积极影响。使用基于光场成像的定制多相机系统,我们证实了共焦去杂波图像的概念可以有效地实现。

相似文献

1
Active confocal imaging for visual prostheses.
Vision Res. 2015 Jun;111(Pt B):182-96. doi: 10.1016/j.visres.2014.10.023. Epub 2014 Nov 3.
2
Optimization of Visual Information Presentation for Visual Prosthesis.
Int J Biomed Imaging. 2018 Mar 14;2018:3198342. doi: 10.1155/2018/3198342. eCollection 2018.
3
Recognition of similar objects using simulated prosthetic vision.
Artif Organs. 2014 Feb;38(2):159-67. doi: 10.1111/aor.12147. Epub 2013 Aug 22.
4
Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
Artif Organs. 2015 Dec;39(12):1038-45. doi: 10.1111/aor.12504. Epub 2015 Apr 24.
5
Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
Artif Intell Med. 2018 Jan;84:64-78. doi: 10.1016/j.artmed.2017.11.001. Epub 2017 Nov 10.
6
7
Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis.
Artif Organs. 2014 Feb;38(2):E10-20. doi: 10.1111/aor.12174. Epub 2013 Oct 1.
8
Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
Brain Res. 2015 Jan 21;1595:51-73. doi: 10.1016/j.brainres.2014.11.020. Epub 2014 Nov 15.
9
Artificial vision support system (AVS(2)) for improved prosthetic vision.
J Med Eng Technol. 2014 Nov;38(8):385-95. doi: 10.3109/03091902.2014.957869. Epub 2014 Oct 6.
10
Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
Artif Organs. 2015 Jul;39(7):E102-13. doi: 10.1111/aor.12476. Epub 2015 Apr 20.

引用本文的文献

1
Computational analysis of efficient organic solar cell-based retinal prosthesis using plasmonic gold nanoparticles.
Front Cell Neurosci. 2023 Jul 27;17:1205048. doi: 10.3389/fncel.2023.1205048. eCollection 2023.
2
Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration.
Int Ophthalmol. 2023 Oct;43(10):3891-3909. doi: 10.1007/s10792-023-02767-2. Epub 2023 Jun 22.
4
Electronic Retinal Prostheses.
Cold Spring Harb Perspect Med. 2023 Aug 1;13(8):a041525. doi: 10.1101/cshperspect.a041525.
5
Object recognition and localization enhancement in visual prostheses: a real-time mixed reality simulation.
Biomed Eng Online. 2022 Dec 24;21(1):91. doi: 10.1186/s12938-022-01059-7.
6
The impact of synchronous versus asynchronous electrical stimulation in artificial vision.
J Neural Eng. 2021 Apr 27;18(5). doi: 10.1088/1741-2552/abecf1.
7
What do blind people "see" with retinal prostheses? Observations and qualitative reports of epiretinal implant users.
PLoS One. 2021 Feb 10;16(2):e0229189. doi: 10.1371/journal.pone.0229189. eCollection 2021.
8
Testing Vision Is Not Testing For Vision.
Transl Vis Sci Technol. 2020 Dec 18;9(13):32. doi: 10.1167/tvst.9.13.32. eCollection 2020 Dec.
9
Preparing participants for the use of the tongue visual sensory substitution device.
Disabil Rehabil Assist Technol. 2022 Nov;17(8):888-896. doi: 10.1080/17483107.2020.1821102. Epub 2020 Sep 30.
10
Restoring Sight with Retinal Prostheses.
Phys Today. 2018 Jul;71(7):26-32. doi: 10.1063/PT.3.3970.

本文引用的文献

1
Evaluation of a Portable Collision Warning Device for Patients With Peripheral Vision Loss in an Obstacle Course.
Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2571-9. doi: 10.1167/iovs.14-15935.
2
Real-time integral imaging system for light field microscopy.
Opt Express. 2014 May 5;22(9):10210-20. doi: 10.1364/OE.22.010210.
4
Functional outcome in subretinal electronic implants depends on foveal eccentricity.
Invest Ophthalmol Vis Sci. 2013 Nov 19;54(12):7658-65. doi: 10.1167/iovs.13-12835.
5
Clinical Tests of Ultra-Low Vision Used to Evaluate Rudimentary Visual Perceptions Enabled by the BrainPort Vision Device.
Transl Vis Sci Technol. 2013 Jun 25;2(3):1. doi: 10.1167/tvst.2.3.1. eCollection 2013.
6
Real-time capturing and 3D visualization method based on integral imaging.
Opt Express. 2013 Aug 12;21(16):18742-53. doi: 10.1364/OE.21.018742.
7
The Argus™ II retinal prosthesis: factors affecting patient selection for implantation.
Prog Retin Eye Res. 2013 Sep;36:1-23. doi: 10.1016/j.preteyeres.2013.01.002. Epub 2013 Mar 14.
8
The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss.
Br J Ophthalmol. 2013 May;97(5):632-6. doi: 10.1136/bjophthalmol-2012-301525. Epub 2013 Feb 20.
9
Smart image processing system for retinal prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:300-3. doi: 10.1109/EMBC.2012.6345928.
10
Integral imaging using a color filter pinhole array on a display panel.
Opt Express. 2012 Aug 13;20(17):18744-56. doi: 10.1364/OE.20.018744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验