Mahfouz Ahmed, van de Giessen Martijn, van der Maaten Laurens, Huisman Sjoerd, Reinders Marcel, Hawrylycz Michael J, Lelieveldt Boudewijn P F
Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands.
Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands.
Methods. 2015 Feb;73:79-89. doi: 10.1016/j.ymeth.2014.10.004. Epub 2014 Oct 16.
The Allen Brain Atlases enable the study of spatially resolved, genome-wide gene expression patterns across the mammalian brain. Several explorative studies have applied linear dimensionality reduction methods such as Principal Component Analysis (PCA) and classical Multi-Dimensional Scaling (cMDS) to gain insight into the spatial organization of these expression patterns. In this paper, we describe a non-linear embedding technique called Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) that emphasizes the local similarity structure of high-dimensional data points. By applying BH-SNE to the gene expression data from the Allen Brain Atlases, we demonstrate the consistency of the 2D, non-linear embedding of the sagittal and coronal mouse brain atlases, and across 6 human brains. In addition, we quantitatively show that BH-SNE maps are superior in their separation of neuroanatomical regions in comparison to PCA and cMDS. Finally, we assess the effect of higher-order principal components on the global structure of the BH-SNE similarity maps. Based on our observations, we conclude that BH-SNE maps with or without prior dimensionality reduction (based on PCA) provide comprehensive and intuitive insights in both the local and global spatial transcriptome structure of the human and mouse Allen Brain Atlases.
艾伦脑图谱有助于研究哺乳动物大脑中空间分辨的全基因组基因表达模式。一些探索性研究应用了线性降维方法,如主成分分析(PCA)和经典多维缩放(cMDS),以深入了解这些表达模式的空间组织。在本文中,我们描述了一种名为巴恩斯-胡特随机邻域嵌入(BH-SNE)的非线性嵌入技术,该技术强调高维数据点的局部相似性结构。通过将BH-SNE应用于艾伦脑图谱的基因表达数据,我们展示了矢状面和冠状面小鼠脑图谱以及6个人脑的二维非线性嵌入的一致性。此外,我们定量表明,与PCA和cMDS相比,BH-SNE图谱在神经解剖区域的分离方面更具优势。最后,我们评估了高阶主成分对BH-SNE相似性图谱全局结构的影响。基于我们的观察,我们得出结论,无论有无先验降维(基于PCA)的BH-SNE图谱,都能为人类和小鼠艾伦脑图谱的局部和全局空间转录组结构提供全面而直观的见解。