Suppr超能文献

胎儿缺氧时缺氧缺血性脑病的表观遗传编程

Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia.

作者信息

Ma Qingyi, Zhang Lubo

机构信息

Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.

Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.

出版信息

Prog Neurobiol. 2015 Jan;124:28-48. doi: 10.1016/j.pneurobio.2014.11.001. Epub 2014 Nov 11.

Abstract

Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain.

摘要

缺氧是胎儿发育的主要应激因素,可能导致发育中的大脑发生不可逆损伤、新生儿脑中枢神经系统(CNS)畸形风险增加以及后代出现长期神经并发症。目前的证据表明,表观遗传机制可能参与发育中的大脑对胎儿应激产生的缺氧/缺血敏感表型的形成。然而,其致病的细胞和分子机制仍不清楚。在本综述中,我们总结了表观遗传机制在大脑发育中的最新研究结果及其在胎儿缺氧诱导的脑发育畸形中的作用。具体而言,我们重点关注DNA甲基化与主动去甲基化、组蛋白修饰以及微小RNA在调节神经元和血管发育可塑性中的作用,这些可能在胎儿应激诱导的发育中大脑缺氧/缺血敏感表型的表观遗传编程中发挥作用。

相似文献

1
Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia.
Prog Neurobiol. 2015 Jan;124:28-48. doi: 10.1016/j.pneurobio.2014.11.001. Epub 2014 Nov 11.
2
Fetal stress-mediated hypomethylation increases the brain susceptibility to hypoxic-ischemic injury in neonatal rats.
Exp Neurol. 2016 Jan;275 Pt 1(0 1):1-10. doi: 10.1016/j.expneurol.2015.10.007. Epub 2015 Oct 24.
3
Gestational hypoxia and epigenetic programming of brain development disorders.
Drug Discov Today. 2014 Dec;19(12):1883-96. doi: 10.1016/j.drudis.2014.09.010. Epub 2014 Sep 26.
5
Fetal e-cigarette exposure programs a neonatal brain hypoxic-ischemic sensitive phenotype via altering DNA methylation patterns and autophagy signaling pathway.
Am J Physiol Regul Integr Comp Physiol. 2021 Nov 1;321(5):R791-R801. doi: 10.1152/ajpregu.00207.2021. Epub 2021 Sep 15.
6
Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions.
Prog Neurobiol. 2012 Aug;98(2):145-65. doi: 10.1016/j.pneurobio.2012.05.010. Epub 2012 May 22.
7
Role of epigenetic regulatory mechanisms in neonatal hypoxic-ischemic brain injury.
Early Hum Dev. 2013 Mar;89(3):165-73. doi: 10.1016/j.earlhumdev.2012.09.016. Epub 2012 Oct 6.
8
Promoter methylation of Egr-1 site contributes to fetal hypoxia-mediated PKCε gene repression in the developing heart.
Am J Physiol Regul Integr Comp Physiol. 2013 May 1;304(9):R683-9. doi: 10.1152/ajpregu.00461.2012. Epub 2013 Feb 20.
9
Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage.
Front Neurol. 2020 Jun 9;11:483. doi: 10.3389/fneur.2020.00483. eCollection 2020.
10
Effects of activated protein C on neonatal hypoxic ischemic brain injury.
Brain Res. 2008 May 19;1210:56-62. doi: 10.1016/j.brainres.2008.02.088. Epub 2008 Mar 10.

引用本文的文献

3
MiR-126 and miR-146a as Melatonin-Responsive Biomarkers for Neonatal Brain Ischemia.
J Mol Neurosci. 2023 Oct;73(9-10):763-772. doi: 10.1007/s12031-023-02155-6. Epub 2023 Sep 19.
4
Potential Key Proteins, Molecular Networks, and Pathways in Perinatal Hypoxia.
Neurotox Res. 2023 Dec;41(6):571-588. doi: 10.1007/s12640-023-00663-2. Epub 2023 Aug 31.
7
Telomerase reverse transcriptase promotes angiogenesis in neonatal rats after hypoxic-ischemic brain damage.
PeerJ. 2022 Oct 21;10:e14220. doi: 10.7717/peerj.14220. eCollection 2022.

本文引用的文献

1
HDAC8-mediated epigenetic reprogramming plays a key role in resistance to anthrax lethal toxin-induced pyroptosis in macrophages.
J Immunol. 2014 Aug 1;193(3):1333-43. doi: 10.4049/jimmunol.1400420. Epub 2014 Jun 27.
3
TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma.
Cell Rep. 2014 Jun 12;7(5):1343-1352. doi: 10.1016/j.celrep.2014.04.040. Epub 2014 May 15.
4
Mfsd2a is critical for the formation and function of the blood-brain barrier.
Nature. 2014 May 22;509(7501):507-11. doi: 10.1038/nature13324. Epub 2014 May 14.
5
Immune mechanisms in cerebral ischemic tolerance.
Front Neurosci. 2014 Mar 4;8:44. doi: 10.3389/fnins.2014.00044. eCollection 2014.
6
Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210.
Nat Immunol. 2014 Apr;15(4):393-401. doi: 10.1038/ni.2846. Epub 2014 Mar 9.
7
Fetal hypoxia increases vulnerability of hypoxic-ischemic brain injury in neonatal rats: role of glucocorticoid receptors.
Neurobiol Dis. 2014 May;65:172-9. doi: 10.1016/j.nbd.2014.01.020. Epub 2014 Feb 7.
9
miR-34a is essential for p19(Arf)-driven cell cycle arrest.
Cell Cycle. 2014;13(5):792-800. doi: 10.4161/cc.27725. Epub 2014 Jan 8.
10
Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2.
EMBO Rep. 2014 Jan;15(1):70-6. doi: 10.1002/embr.201337642. Epub 2013 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验