Suppr超能文献

一种用于脑电图微状态序列分析的随机模型。

A stochastic model for EEG microstate sequence analysis.

作者信息

Gärtner Matthias, Brodbeck Verena, Laufs Helmut, Schneider Gaby

机构信息

Institute for Mathematics, Goethe University Frankfurt am Main, Germany; Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germany.

Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germany.

出版信息

Neuroimage. 2015 Jan 1;104:199-208. doi: 10.1016/j.neuroimage.2014.10.014. Epub 2014 Oct 16.

Abstract

The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.

摘要

对自发静息态神经元活动的分析被认为有助于深入了解大脑功能。一种研究静息态活动的非侵入性技术是脑电图(EEG)以及随后的微状态分析。该技术将记录的EEG信号简化为一系列典型地形图,据推测这些地形图捕捉了信号重要的时空特性。在对清醒和睡眠三个阶段的健康受试者进行的统计性EEG微状态分析中,我们在微状态转移矩阵中观察到一种简单结构。它可以用一阶马尔可夫链来描述,其中从当前状态(即地形图)到不同地形图的转移概率不依赖于当前地形图。所得转移矩阵与观察到的转移矩阵高度吻合,仅需约2%的质量传输(1/2 L1距离)。在第二部分,我们引入一个扩展框架,其中简单马尔可夫链用于对潜在的基础时间连续过程进行推断。这个过程无法直接观察到,因此通常从由全局场功率局部最大值给出的EEG信号离散采样点进行估计。因此,我们提出一种称为采样标记区间(SMI)模型的简单随机模型,该模型将观察到的微状态序列与假定的背景区间基础过程相关联,从而补充了专注于可观察微状态序列分析的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验