Suppr超能文献

氧气作为骨折愈合的关键决定因素——一个多尺度模型

Oxygen as a critical determinant of bone fracture healing-a multiscale model.

作者信息

Carlier Aurélie, Geris Liesbet, van Gastel Nick, Carmeliet Geert, Van Oosterwyck Hans

机构信息

Biomechanics Section, KU Leuven, Celestijnenlaan 300 C, PB 2419, 3000 Leuven, Belgium; Biomechanics Research Unit, University of Liege, Chemin des Chevreuils 1-BAT 52/3, 4000 Liege 1, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, PB 813, 3000 Leuven, Belgium.

Clinical and Experimental Endocrinology, KU Leuven, O&N 1, Herestraat 49, PB 902, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, PB 813, 3000 Leuven, Belgium.

出版信息

J Theor Biol. 2015 Jan 21;365:247-64. doi: 10.1016/j.jtbi.2014.10.012. Epub 2014 Oct 24.

Abstract

A timely restoration of the ruptured blood vessel network in order to deliver oxygen and nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as in the regulation of several (angiogenic) genes. In this paper, a previously developed model of bone fracture healing is further improved with a detailed description of the influence of oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges of the cell-specific oxygen-dependent processes were established based on the state-of-the art experimental knowledge through a rigorous literature study. The newly developed oxygen model is compared with previously published experimental and in silico results. An extensive sensitivity analysis was also performed on the newly introduced oxygen thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was applied to the challenging clinical case of a critical sized defect (3mm) where it predicted the formation of a fracture non-union. Further model analyses showed that the harsh hypoxic conditions in the central region of the callus resulted in cell death and disrupted bone healing thereby indicating the importance of a timely vascularization for the successful healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen delivery, diffusion and consumption with the several healing steps, each occurring at distinct, optimal oxygen tensions during the bone repair process.

摘要

及时修复破裂的血管网络以向骨折区域输送氧气和营养物质对于成功的骨愈合至关重要。事实上,氧气在细胞的有氧代谢、众多酶的活性以及几种(血管生成)基因的调控中起着关键作用。在本文中,先前开发的骨折愈合模型得到了进一步改进,详细描述了氧气对骨折愈合过程中发生的各种细胞过程的影响。通过严格的文献研究,基于最新的实验知识确定了细胞特异性氧依赖过程的氧范围。将新开发的氧模型与先前发表的实验结果和计算机模拟结果进行了比较。还对新引入的氧阈值进行了广泛的敏感性分析,表明了氧模型的稳健性。最后,将氧模型应用于具有挑战性的临界尺寸缺损(3毫米)临床病例,该模型预测了骨折不愈合的形成。进一步的模型分析表明,骨痂中心区域恶劣的低氧条件导致细胞死亡并破坏骨愈合,从而表明及时血管化对于大骨缺损成功愈合的重要性。总之,这项工作表明,氧模型是一个强大的工具,可进一步揭示氧气输送、扩散和消耗与几个愈合步骤之间复杂的时空相互作用,每个步骤在骨修复过程中都发生在不同的最佳氧张力下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验