Suppr超能文献

一种通过整合外部信息改进微小RNA靶标预测的贝叶斯框架。

A Bayesian Framework to Improve MicroRNA Target Prediction by Incorporating External Information.

作者信息

Wang Zixing, Xu Wenlong, Zhu Haifeng, Liu Yin

机构信息

Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Cancer Inform. 2014 Nov 18;13(Suppl 7):19-25. doi: 10.4137/CIN.S16348. eCollection 2014.

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that play key gene-regulatory roles in diverse biological processes, particularly in cancer development. Therefore, inferring miRNA targets is an essential step to fully understanding the functional properties of miRNA actions in regulating tumorigenesis. Bayesian linear regression modeling has been proposed for identifying the interactions between miRNAs and mRNAs on the basis of the integrated sequence information and matched miRNA and mRNA expression data; however, this approach does not use the full spectrum of available features of putative miRNA targets. In this study, we integrated four important sequence and structural features of miRNA targeting with paired miRNA and mRNA expression data to improve miRNA-target prediction in a Bayesian framework. We have applied this approach to a gene-expression study of liver cancer patients and examined the posterior probability of each miRNA-mRNA interaction being functional in the development of liver cancer. Our method achieved better performance, in terms of the number of true targets identified, than did other methods.

摘要

微小RNA(miRNA)是一类小的调节性RNA,在多种生物学过程中发挥关键的基因调节作用,尤其是在癌症发展过程中。因此,推断miRNA的靶标是全面理解miRNA在调节肿瘤发生过程中功能特性的重要一步。基于整合的序列信息以及匹配的miRNA和mRNA表达数据,有人提出了贝叶斯线性回归模型来识别miRNA与mRNA之间的相互作用;然而,这种方法并未利用假定miRNA靶标的所有可用特征。在本研究中,我们将miRNA靶向的四个重要序列和结构特征与配对的miRNA和mRNA表达数据相结合,以在贝叶斯框架下改进miRNA靶标预测。我们已将此方法应用于肝癌患者的基因表达研究,并检验了每种miRNA与mRNA相互作用在肝癌发生过程中发挥功能的后验概率。就识别出的真实靶标数量而言,我们的方法比其他方法表现更优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e8f/4238384/01bdb55bf646/cin-suppl.7-2014-019f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验