Suppr超能文献

KRAS 基因突变的结直肠癌细胞中 18F-FDG 摄取的调节。

Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS.

机构信息

Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

出版信息

J Nucl Med. 2014 Dec;55(12):2038-44. doi: 10.2967/jnumed.114.142927. Epub 2014 Nov 5.

Abstract

UNLABELLED

KRAS gene mutations occur in approximately 40% of colorectal cancers (CRCs) and are associated with resistance to anti-epidermal growth factor receptor antibody therapy. We previously demonstrated that (18)F-FDG accumulation in PET was significantly higher in CRCs with mutated KRAS than in those with wild-type KRAS in a clinical setting. Here, we investigated the mechanisms by which mutated KRAS increased (18)F-FDG accumulation.

METHODS

Using paired isogenic human CRC cell lines that differ only in the mutational status of the KRAS gene, we measured (18)F-FDG accumulation in these cells in vitro and in vivo. We also investigated the roles of proteins that have a function in (18)F-FDG accumulation. Finally, we examined the relationship among mutated KRAS, hypoxia-inducible factor 1α (HIF-1α), and maximum standardized uptake value with 51 clinical CRC samples.

RESULTS

In the in vitro experiments, (18)F-FDG accumulation was significantly higher in KRAS-mutant cells than in wild-type controls under normoxic conditions. The expression levels of glucose transporter 1 (GLUT1) and hexokinase type 2 (HK2) were higher in KRAS-mutant cells, and (18)F-FDG accumulation was decreased by knockdown of GLUT1. Hypoxic induction of HIF-1α was higher in KRAS-mutant cells than in wild-type controls; in turn, elevated HIF-1α resulted in higher GLUT1 expression and (18)F-FDG accumulation. In addition, HIF-1α knockdown decreased (18)F-FDG accumulation under hypoxic conditions only in the KRAS-mutant cells. Small-animal PET scans showed in vivo (18)F-FDG accumulation to be significantly higher in xenografts with mutated KRAS than in those with wild-type KRAS. The immunohistochemistry of these xenograft tumors showed that staining of GLUT1 was consistent with that of HIF-1α and pimonidazole. In a retrospective analysis of clinical samples, KRAS mutation exhibited a significantly positive correlation with expressions of GLUT1 and HIF-1α and with maximum standardized uptake value.

CONCLUSION

Mutated KRAS caused higher (18)F-FDG accumulation possibly by upregulation of GLUT1; moreover, HIF-1α additively increased (18)F-FDG accumulation in hypoxic lesions. (18)F-FDG PET might be useful for predicting the KRAS status noninvasively.

摘要

目的

KRAS 基因突变发生于约 40%的结直肠癌(CRC)中,与抗表皮生长因子受体抗体治疗的耐药性相关。我们先前在临床环境中证明,在 KRAS 突变型 CRC 中,(18)F-FDG 在 PET 中的聚集明显高于 KRAS 野生型。在此,我们研究了 KRAS 突变增加(18)F-FDG 聚集的机制。

方法

使用配对的具有相同 KRAS 基因突变状态的同源人 CRC 细胞系,我们在体外和体内测量这些细胞中(18)F-FDG 的聚集。我们还研究了在(18)F-FDG 聚集中具有功能的蛋白质的作用。最后,我们检查了 51 例临床 CRC 样本中 KRAS 突变、缺氧诱导因子 1α(HIF-1α)和最大标准化摄取值之间的关系。

结果

在体外实验中,在常氧条件下,KRAS 突变细胞中(18)F-FDG 的聚集明显高于野生型对照。KRAS 突变细胞中葡萄糖转运蛋白 1(GLUT1)和己糖激酶 2(HK2)的表达水平较高,并且 GLUT1 的敲低降低了(18)F-FDG 的聚集。KRAS 突变细胞中缺氧诱导的 HIF-1α较高,而野生型对照则较高;反过来,升高的 HIF-1α导致 GLUT1 表达和(18)F-FDG 聚集增加。此外,仅在 KRAS 突变细胞中,HIF-1α 的敲低降低了缺氧条件下的(18)F-FDG 聚集。小动物 PET 扫描显示,携带 KRAS 突变的异种移植物体内(18)F-FDG 的积累明显高于携带野生型 KRAS 的异种移植物。这些异种移植瘤的免疫组化染色显示 GLUT1 的染色与 HIF-1α和 pimonidazole 的染色一致。在对临床样本的回顾性分析中,KRAS 突变与 GLUT1 和 HIF-1α的表达以及最大标准化摄取值呈显著正相关。

结论

KRAS 突变通过上调 GLUT1 导致更高的(18)F-FDG 聚集;此外,HIF-1α 在缺氧病变中附加增加(18)F-FDG 聚集。(18)F-FDG PET 可能有助于非侵入性地预测 KRAS 状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验