Blath Jochen, Kadow Stephan, Ortgiese Marcel
Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.
Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.
Theor Popul Biol. 2014 Dec;98:28-37. doi: 10.1016/j.tpb.2014.10.001. Epub 2014 Oct 20.
We establish a link between Wakeley et al.'s (2012) cyclical pedigree model from population genetics and a randomized directed configuration model (DCM) considered by Cooper and Frieze (2004). We then exploit this link in combination with asymptotic results for the in-degree distribution of the corresponding DCM to compute the asymptotic size of the largest strongly connected component S(N) (where N is the population size) of the DCM resp. the pedigree. The size of the giant component can be characterized explicitly (amounting to approximately 80% of the total populations size) and thus contributes to a reduced 'pedigree effective population size'. In addition, the second largest strongly connected component is only of size O(logN). Moreover, we describe the size and structure of the 'domain of attraction' of S(N). In particular, we show that with high probability for any individual the shortest ancestral line reaches S(N) after O(loglogN) generations, while almost all other ancestral lines take at most O(logN) generations.
我们在群体遗传学中Wakeley等人(2012年)的循环谱系模型与Cooper和Frieze(2004年)考虑的随机有向配置模型(DCM)之间建立了联系。然后,我们利用这种联系,结合相应DCM入度分布的渐近结果,来计算DCM或谱系中最大强连通分量S(N)(其中N是群体大小)的渐近大小。巨分量的大小可以明确表征(约占总人口大小的80%),因此有助于减小“谱系有效群体大小”。此外,第二大强连通分量的大小仅为O(logN)。而且,我们描述了S(N)的“吸引域”的大小和结构。特别地,我们表明,对于任何个体,以高概率,最短祖先线在O(loglogN)代后到达S(N),而几乎所有其他祖先线最多需要O(logN)代。