Ala-Laurila Petri, Rieke Fred
Department of Biosciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland; Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
Curr Biol. 2014 Dec 15;24(24):2888-98. doi: 10.1016/j.cub.2014.10.028. Epub 2014 Nov 6.
Vision in starlight relies on our ability to detect single absorbed photons. Indeed, the sensitivity of dark-adapted vision approaches limits set by the quantal nature of light. This sensitivity requires neural mechanisms that selectively transmit quantal responses and suppress noise. Such mechanisms face an inevitable tradeoff because signal and noise cannot be perfectly separated, and rejecting noise also means rejecting signal.
We report measurements of single-photon responses in the output signals of the primate retina. We find that visual signals arising from a few absorbed photons are read out fundamentally differently by primate On and Off parasol ganglion cells, key retinal output neurons. Off parasol cells respond linearly to near-threshold flashes, retaining sensitivity to each absorbed photon but maintaining a high level of noise. On parasol cells respond nonlinearly due to thresholding of their excitatory synaptic inputs. This nonlinearity reduces neural noise but also limits information about single-photon absorptions.
The long-standing idea that information about each photon absorption is available for behavior at the sensitivity limit of vision is not universally true across retinal outputs. More generally, our work shows how a neural circuit balances the competing needs for sensitivity and noise rejection.
在星光下的视觉依赖于我们检测单个被吸收光子的能力。事实上,暗适应视觉的敏感度接近由光的量子性质所设定的极限。这种敏感度需要神经机制来选择性地传递量子反应并抑制噪声。由于信号和噪声无法完美分离,且抑制噪声也意味着舍弃信号,所以此类机制面临着不可避免的权衡。
我们报告了对灵长类视网膜输出信号中单个光子反应的测量结果。我们发现,由少数被吸收光子产生的视觉信号在灵长类动物的ON型和OFF型伞状神经节细胞(关键的视网膜输出神经元)中有着根本不同的读出方式。OFF型伞状细胞对接近阈值的闪光呈线性反应,对每个被吸收的光子保持敏感度,但维持着高水平的噪声。ON型伞状细胞由于其兴奋性突触输入的阈值化而呈非线性反应。这种非线性降低了神经噪声,但也限制了关于单个光子吸收的信息。
关于每个光子吸收的信息在视觉敏感度极限下可用于行为的这一长期观点,在视网膜输出中并非普遍成立。更普遍地说,我们的研究表明神经回路如何平衡对敏感度和噪声抑制的相互竞争的需求。