Suppr超能文献

对视觉运动的非对称处理,以实现同时对目标和背景的反应。

Asymmetric processing of visual motion for simultaneous object and background responses.

机构信息

Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.

Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.

出版信息

Curr Biol. 2014 Dec 15;24(24):2913-9. doi: 10.1016/j.cub.2014.10.042. Epub 2014 Nov 13.

Abstract

Visual object fixation and figure-ground discrimination in Drosophila are robust behaviors requiring sophisticated computation by the visual system, yet the neural substrates remain unknown. Recent experiments in walking flies revealed object fixation behavior mediated by circuitry independent from the motion-sensitive T4-T5 cells required for wide-field motion responses. In tethered flight experiments under closed-loop conditions, we found similar results for one feedback gain, whereas intact T4-T5 cells were necessary for robust object fixation at a higher feedback gain and in figure-ground discrimination tasks. We implemented dynamical models (available at http://strawlab.org/asymmetric-motion/) based on neurons downstream of T4-T5 cells—one a simple phenomenological model and another, physiologically more realistic model—and found that both predict key features of stripe fixation and figure-ground discrimination and are consistent with a classical formulation. Fundamental to both models is motion asymmetry in the responses of model neurons, whereby front-to-back motion elicits stronger responses than back-to-front motion. When a bilateral pair of such model neurons, based on well-understood horizontal system cells, downstream of T4-T5, is coupled to turning behavior, asymmetry leads to object fixation and figure-ground discrimination in the presence of noise. Furthermore, the models also predict fixation in front of a moving background, a behavior previously suggested to require an additional pathway. Thus, the models predict several aspects of object responses on the basis of neurons that are also thought to serve a key role in background stabilization.

摘要

在果蝇中,视觉目标固定和图形-背景区分是需要视觉系统进行复杂计算的稳健行为,但神经基质仍然未知。最近在行走果蝇中的实验揭示了一种由与 T4-T5 细胞(用于宽场运动反应)无关的电路介导的目标固定行为,T4-T5 细胞对运动敏感。在闭环条件下的系留飞行实验中,我们发现对于一个反馈增益具有类似的结果,而完整的 T4-T5 细胞对于在更高的反馈增益下和在图形-背景区分任务中稳健的目标固定是必要的。我们实现了基于 T4-T5 细胞下游神经元的动力学模型(可在 http://strawlab.org/asymmetric-motion/ 获得)——一个是简单的现象学模型,另一个是更符合生理学的模型——并发现两者都预测了条纹固定和图形-背景区分的关键特征,并且与经典公式一致。这两个模型的基础是模型神经元反应中的运动不对称性,即前向运动比后向运动引起更强的反应。当 T4-T5 下游基于理解良好的水平系统细胞的这样一对双边模型神经元与转弯行为耦合时,不对称性会导致在存在噪声的情况下进行目标固定和图形-背景区分。此外,这些模型还预测了在移动背景前的固定行为,这一行为先前被认为需要额外的途径。因此,这些模型基于被认为在背景稳定中起关键作用的神经元,预测了目标反应的几个方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验