Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
Nature. 2013 Aug 8;500(7461):212-6. doi: 10.1038/nature12320.
The extraction of directional motion information from changing retinal images is one of the earliest and most important processing steps in any visual system. In the fly optic lobe, two parallel processing streams have been anatomically described, leading from two first-order interneurons, L1 and L2, via T4 and T5 cells onto large, wide-field motion-sensitive interneurons of the lobula plate. Therefore, T4 and T5 cells are thought to have a pivotal role in motion processing; however, owing to their small size, it is difficult to obtain electrical recordings of T4 and T5 cells, leaving their visual response properties largely unknown. We circumvent this problem by means of optical recording from these cells in Drosophila, using the genetically encoded calcium indicator GCaMP5 (ref. 2). Here we find that specific subpopulations of T4 and T5 cells are directionally tuned to one of the four cardinal directions; that is, front-to-back, back-to-front, upwards and downwards. Depending on their preferred direction, T4 and T5 cells terminate in specific sublayers of the lobula plate. T4 and T5 functionally segregate with respect to contrast polarity: whereas T4 cells selectively respond to moving brightness increments (ON edges), T5 cells only respond to moving brightness decrements (OFF edges). When the output from T4 or T5 cells is blocked, the responses of postsynaptic lobula plate neurons to moving ON (T4 block) or OFF edges (T5 block) are selectively compromised. The same effects are seen in turning responses of tethered walking flies. Thus, starting with L1 and L2, the visual input is split into separate ON and OFF pathways, and motion along all four cardinal directions is computed separately within each pathway. The output of these eight different motion detectors is then sorted such that ON (T4) and OFF (T5) motion detectors with the same directional tuning converge in the same layer of the lobula plate, jointly providing the input to downstream circuits and motion-driven behaviours.
从不断变化的视网膜图像中提取方向运动信息是任何视觉系统最早和最重要的处理步骤之一。在果蝇的复眼脑区,已有两种平行的处理通路被解剖学描述,其分别起源于两个第一级神经元 L1 和 L2,经由 T4 和 T5 细胞投射到宽大的、对运动敏感的小叶板中间神经元。因此,T4 和 T5 细胞被认为在运动处理中具有关键作用;然而,由于它们体积较小,很难对 T4 和 T5 细胞进行电记录,这使得它们的视觉反应特性在很大程度上不为人知。我们通过在果蝇中使用遗传编码的钙指示剂 GCaMP5 进行这些细胞的光学记录,解决了这个问题。在这里,我们发现 T4 和 T5 细胞的特定亚群对四个主要方向中的一个方向具有方向调谐性;也就是说,从前到后、从后到前、向上和向下。根据它们的最佳方向,T4 和 T5 细胞终止于小叶板的特定亚层。T4 和 T5 细胞在对比度极性方面具有功能分离性:T4 细胞选择性地对移动的亮度增加(ON 边缘)做出反应,而 T5 细胞仅对移动的亮度减少(OFF 边缘)做出反应。当 T4 或 T5 细胞的输出被阻断时,对运动 ON(T4 阻断)或 OFF 边缘(T5 阻断)的小叶板神经元的反应会被选择性地削弱。在被拴住的行走果蝇的转弯反应中也观察到同样的效果。因此,从 L1 和 L2 开始,视觉输入被分为单独的 ON 和 OFF 通路,并且在每个通路上分别计算沿所有四个主要方向的运动。然后对这八个不同的运动探测器的输出进行分类,使得具有相同方向调谐的 ON(T4)和 OFF(T5)运动探测器在小叶板的同一层汇聚,共同为下游电路和运动驱动的行为提供输入。