State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China.
J Neurosci. 2023 Jun 28;43(26):4821-4836. doi: 10.1523/JNEUROSCI.0128-23.2023. Epub 2023 Jun 8.
Relative motion breaks a camouflaged target from a same-textured background, thus eliciting discrimination of a motion-defined object. Ring (R) neurons are critical components in the central complex, which has been implicated in multiple visually guided behaviors. Using two-photon calcium imaging with female flies, we demonstrated that a specific population of R neurons that innervate the superior domain of bulb neuropil, termed superior R neurons, encoded a motion-defined bar with high spatial frequency contents. Upstream superior tuberculo-bulbar (TuBu) neurons transmitted visual signals by releasing acetylcholine within synapses connected with superior R neurons. Blocking TuBu or R neurons impaired tracking performance of the bar, which reveals their importance in motion-defined feature encoding. Additionally, the presentation of a low spatial frequency luminance-defined bar evoked consistent excitation in R neurons of the superior bulb, whereas either excited or inhibited responses were evoked in the inferior bulb. The distinct properties of the responses to the two bar stimuli indicate there is a functional division between the bulb subdomains. Moreover, physiological and behavioral tests with restricted lines suggest that R4d neurons play a vital role in tracking motion-defined bars. We conclude that the central complex receives the motion-defined features via a visual pathway from superior TuBu to R neurons and might encode different visual features via distinct response patterns at the population level, thereby driving visually guided behaviors. Animals could discriminate a motion-defined object that is indistinguishable with a same-textured background until it moves, but little is known about the underlying neural mechanisms. In this study, we identified that R neurons and their upstream partners, TuBu neurons, innervating the superior bulb of central brain are involved in the discrimination of high-frequency motion-defined bars. Our study provides new evidence that R neurons receive multiple visual inputs from distinct upstream neurons, indicating a population coding mechanism for the fly central brain to discriminate diverse visual features. These results build progress in unraveling neural substrates for visually guided behaviors.
相对运动使伪装目标与同质地背景脱离,从而引发对运动定义物体的辨别。环(R)神经元是中央复合体的关键组成部分,该复合体已被牵涉到多种视觉引导行为中。使用双光子钙成像技术对雌性果蝇进行研究,我们证明了一个特定的 R 神经元群体,这些神经元支配着球神经节的上域,称为上 R 神经元,它们对具有高空间频率内容的运动定义棒进行编码。上游的上丘-球神经节(TuBu)神经元通过在与上 R 神经元相连的突触中释放乙酰胆碱来传递视觉信号。阻断 TuBu 或 R 神经元会损害对棒的跟踪性能,这表明它们在运动定义特征编码中很重要。此外,呈现具有低空间频率的亮度定义棒会在上球的 R 神经元中引起一致的兴奋,而在下球中则会引起兴奋或抑制反应。对这两种棒刺激的反应的不同特性表明,球的亚域之间存在功能划分。此外,使用限制线路进行的生理和行为测试表明,R4d 神经元在跟踪运动定义棒方面起着至关重要的作用。我们得出结论,中央复合体通过来自上 TuBu 到 R 神经元的视觉通路接收运动定义特征,并且可能通过在群体水平上的不同反应模式来编码不同的视觉特征,从而驱动视觉引导行为。动物可以在物体移动之前区分与同质地背景难以区分的运动定义物体,但对于潜在的神经机制知之甚少。在这项研究中,我们确定了 R 神经元及其上游伙伴,即支配中央脑的上球的 TuBu 神经元,参与了高频运动定义棒的辨别。我们的研究提供了新的证据,表明 R 神经元从不同的上游神经元接收多个视觉输入,这表明果蝇中央脑的群体编码机制可以区分不同的视觉特征。这些结果为揭示视觉引导行为的神经基础奠定了基础。