Rahmana Ziaur, Sung Bong Hyun, Yi Ji-Yeun, Bui Le Minh, Lee Jun Hyoung, Kim Sun Chang
J Biotechnol. 2014 Dec 20;192 Pt A:187-91. doi: 10.1016/j.jbiotec.2014.10.014.
Alkanes chemically mimic hydrocarbons found in petroleum, and their demand as biofuels is steadily increasing. Biologically, n-alkanes are produced from fatty acyl-ACPs by acyl-ACP reductases (AARs) and aldehyde deformylating oxygenases (ADOs). One of the major impediments in n-alkane biosynthesis is the low catalytic turnover rates of ADOs. Here, we studied n-alkane biosynthesis in Escherichia coli using a chimeric ADO-AAR fusion protein or zinc finger protein-guided ADO/AAR assembly on DNA scaffolds to control their stoichiometric ratios and spatial arrangements. Bacterial production of n-alkanes with the ADO-AAR fusion protein was increased 4.8-fold (24 mg/L) over a control strain expressing ADO and AAR separately. Optimal n-alkane biosynthesis was achieved when the ADO:AAR binding site ratio on a DNA scaffold was 3:1, yielding an 8.8-fold increase (44 mg/L) over the control strain. Our findings indicate that the spatial organization of alkane-producing enzymes is critical for efficient n-alkane biosynthesis in E. coli.
烷烃在化学性质上模拟石油中发现的碳氢化合物,并且它们作为生物燃料的需求正在稳步增加。在生物学上,正构烷烃是由脂肪酰基-酰基载体蛋白(acyl-ACP reductases,AARs)和醛脱甲酰基加氧酶(aldehyde deformylating oxygenases,ADOs)从脂肪酰基-ACP中产生的。正构烷烃生物合成的主要障碍之一是ADO的催化周转率低。在这里,我们利用嵌合的ADO-AAR融合蛋白或锌指蛋白引导的ADO/AAR在DNA支架上组装,以控制它们的化学计量比和空间排列,研究了大肠杆菌中的正构烷烃生物合成。与分别表达ADO和AAR的对照菌株相比,使用ADO-AAR融合蛋白的细菌正构烷烃产量提高了4.8倍(24毫克/升)。当DNA支架上的ADO:AAR结合位点比例为3:1时,实现了最佳的正构烷烃生物合成,比对照菌株增加了8.8倍(44毫克/升)。我们的研究结果表明,产烷烃酶的空间组织对于大肠杆菌中高效的正构烷烃生物合成至关重要。