Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
Microb Cell Fact. 2022 Dec 12;21(1):256. doi: 10.1186/s12934-022-01981-4.
The use of biologically produced alkanes has attracted considerable attention as an alternative energy source to petroleum. In 2010, the alkane synthesis pathway in cyanobacteria was found to include two small globular proteins, acyl-(acyl carrier protein [ACP]) reductase (AAR) and aldehyde deformylating oxygenase (ADO). AAR produces fatty aldehydes from acyl-ACPs/CoAs, which are then converted by ADO to alkanes/alkenes equivalent to diesel oil. This discovery has paved the way for alkane production by genetically modified organisms. Since then, many studies have investigated the reactions catalyzed by AAR and ADO. In this review, we first summarize recent findings on structures and catalytic mechanisms of AAR and ADO. We then outline the mechanism by which AAR and ADO form a complex and efficiently transfer the insoluble aldehyde produced by AAR to ADO. Furthermore, we describe recent advances in protein engineering studies on AAR and ADO to improve the efficiency of alkane production in genetically engineered microorganisms such as Escherichia coli and cyanobacteria. Finally, the role of alkanes in cyanobacteria and future perspectives for bioalkane production using AAR and ADO are discussed. This review provides strategies for improving the production of bioalkanes using AAR and ADO in cyanobacteria for enabling the production of carbon-neutral fuels.
生物合成烷烃作为石油的替代能源引起了相当大的关注。2010 年,人们发现蓝细菌中的烷烃合成途径包括两种小球状蛋白,酰基-酰基辅酶 A(ACP)还原酶(AAR)和醛脱甲酰基氧化酶(ADO)。AAR 从酰基-ACP/CoA 产生脂肪酸醛,然后 ADO 将其转化为与柴油相当的烷烃/烯烃。这一发现为通过转基因生物生产烷烃铺平了道路。此后,许多研究都研究了 AAR 和 ADO 催化的反应。在这篇综述中,我们首先总结了 AAR 和 ADO 的结构和催化机制的最新发现。然后,我们概述了 AAR 和 ADO 形成复合物并将 AAR 产生的不溶性醛有效地转移到 ADO 的机制。此外,我们还描述了 AAR 和 ADO 的蛋白质工程研究的最新进展,以提高大肠杆菌和蓝细菌等转基因微生物中烷烃的生产效率。最后,讨论了烷烃在蓝细菌中的作用以及使用 AAR 和 ADO 生产生物烷烃的未来前景。这篇综述为利用 AAR 和 ADO 在蓝细菌中提高生物烷烃的生产提供了策略,从而实现碳中性燃料的生产。