Suppr超能文献

通过阻断关键回流节点对枯草芽孢杆菌进行计算机辅助代谢工程改造以高效生物合成嘌呤核苷

In silico-guided metabolic engineering of Bacillus subtilis for efficient biosynthesis of purine nucleosides by blocking the key backflow nodes.

作者信息

Deng Aihua, Qiu Qidi, Sun Qinyun, Chen Zhenxiang, Wang Junyue, Zhang Yu, Liu Shuwen, Wen Tingyi

机构信息

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Biotechnol Biofuels Bioprod. 2022 Aug 11;15(1):82. doi: 10.1186/s13068-022-02179-x.

Abstract

BACKGROUND

Purine nucleosides play essential roles in cellular physiological processes and have a wide range of applications in the fields of antitumor/antiviral drugs and food. However, microbial overproduction of purine nucleosides by de novo metabolic engineering remains a great challenge due to their strict and complex regulatory machinery involved in biosynthetic pathways.

RESULTS

In this study, we designed an in silico-guided strategy for overproducing purine nucleosides based on a genome-scale metabolic network model in Bacillus subtilis. The metabolic flux was analyzed to predict two key backflow nodes, Drm (purine nucleotides toward PPP) and YwjH (PPP-EMP), to resolve the competitive relationship between biomass and purine nucleotide synthesis. In terms of the purine synthesis pathway, the first backflow node Drm was inactivated to block the degradation of purine nucleotides, which greatly increased the inosine production to 13.98-14.47 g/L without affecting cell growth. Furthermore, releasing feedback inhibition of the purine operon by promoter replacement enhanced the accumulation of purine nucleotides. In terms of the central carbon metabolic pathways, the deletion of the second backflow node YwjH and overexpression of Zwf were combined to increase inosine production to 22.01 ± 1.18 g/L by enhancing the metabolic flow of PPP. By switching on the flux node of the glucose-6-phosphate to PPP or EMP, the final inosine engineered strain produced up to 25.81 ± 1.23 g/L inosine by a pgi-based metabolic switch with a yield of 0.126 mol/mol glucose, a productivity of 0.358 g/L/h and a synthesis rate of 0.088 mmol/gDW/h, representing the highest yield in de novo engineered inosine bacteria. Under the guidance of this in silico-designed strategy, a general chassis bacterium was generated, for the first time, to efficiently synthesize inosine, adenosine, guanosine, IMP and GMP, which provides sufficient precursors for the synthesis of various purine intermediates.

CONCLUSIONS

Our study reveals that in silico-guided metabolic engineering successfully optimized the purine synthesis pathway by exploring efficient targets, which could be applied as a superior strategy for efficient biosynthesis of biotechnological products.

摘要

背景

嘌呤核苷在细胞生理过程中发挥着重要作用,在抗肿瘤/抗病毒药物和食品领域有广泛应用。然而,由于嘌呤核苷生物合成途径涉及严格且复杂的调控机制,通过从头代谢工程实现微生物过量生产嘌呤核苷仍然是一项巨大挑战。

结果

在本研究中,我们基于枯草芽孢杆菌的基因组规模代谢网络模型设计了一种计算机辅助指导的策略来过量生产嘌呤核苷。分析代谢通量以预测两个关键的回流节点,即Drm(嘌呤核苷酸向磷酸戊糖途径)和YwjH(磷酸戊糖途径 - 糖酵解途径),以解决生物量与嘌呤核苷酸合成之间的竞争关系。在嘌呤合成途径方面,使第一个回流节点Drm失活以阻断嘌呤核苷酸的降解,这在不影响细胞生长的情况下将肌苷产量大幅提高至13.98 - 14.47 g/L。此外,通过启动子替换解除嘌呤操纵子的反馈抑制增强了嘌呤核苷酸的积累。在中心碳代谢途径方面,删除第二个回流节点YwjH并过表达Zwf,通过增强磷酸戊糖途径的代谢流将肌苷产量提高至22.01±1.18 g/L。通过开启6 - 磷酸葡萄糖向磷酸戊糖途径或糖酵解途径的通量节点,最终的肌苷工程菌株通过基于pgi的代谢开关产生高达25.81±1.23 g/L的肌苷,产率为0.126 mol/mol葡萄糖,生产力为0.358 g/L/h,合成速率为0.088 mmol/gDW/h,代表了从头工程改造的产肌苷细菌中的最高产率。在这种计算机设计策略的指导下,首次构建了一种通用底盘细菌,能够高效合成肌苷、腺苷、鸟苷、肌苷酸和鸟苷酸,为各种嘌呤中间体的合成提供了充足的前体。

结论

我们的研究表明,计算机辅助指导的代谢工程通过探索有效靶点成功优化了嘌呤合成途径,可作为生物技术产品高效生物合成的一种卓越策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/555c/9367096/5669789cd5cb/13068_2022_2179_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验