Neuronal Networks Group, Deutsches Zentrum für Neurodegenerative Erkrankungen, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
Section of Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Straße 25, 53125 Bonn, Germany.
Neuron. 2014 Dec 3;84(5):1023-33. doi: 10.1016/j.neuron.2014.10.024. Epub 2014 Nov 13.
Dendritic structure critically determines the electrical properties of neurons and, thereby, defines the fundamental process of input-to-output conversion. The diversity of dendritic architectures enables neurons to fulfill their specialized circuit functions during cognitive processes. It is known that this dendritic integrity is impaired in patients with Alzheimer's disease and in relevant mouse models. It is unknown, however, whether this structural degeneration translates into aberrant neuronal function. Here we use in vivo whole-cell patch-clamp recordings, high-resolution STED imaging, and computational modeling of CA1 pyramidal neurons in a mouse model of Alzheimer's disease to show that structural degeneration and neuronal hyperexcitability are crucially linked. Our results demonstrate that a structure-dependent amplification of synaptic input to action potential output conversion might constitute a novel cellular pathomechanism underlying network dysfunction with potential relevance for other neurodegenerative diseases with abnormal changes of dendritic morphology.
树突结构对神经元的电性能至关重要,从而定义了输入到输出转换的基本过程。树突结构的多样性使神经元能够在认知过程中发挥其特定的电路功能。已知在阿尔茨海默病患者和相关的小鼠模型中,这种树突完整性受损。然而,尚不清楚这种结构退化是否会转化为异常的神经元功能。在这里,我们使用阿尔茨海默病小鼠模型中的体内全细胞膜片钳记录、高分辨率 STED 成像和 CA1 锥体神经元的计算建模,表明结构退化和神经元过度兴奋是紧密相关的。我们的研究结果表明,突触输入到动作电位输出转换的结构依赖性放大可能构成一种新的细胞病理机制,这种机制与其他具有树突形态异常变化的神经退行性疾病中的网络功能障碍有关。