Suppr超能文献

睡眠期间 EEG 的复发分析能准确识别有心理健康症状的受试者。

Recurrence analysis of the EEG during sleep accurately identifies subjects with mental health symptoms.

机构信息

Division of Sleep Medicine, Department of Neurology, LSU Health Sciences Center, Shreveport, LA, USA.

Department of Pulmonary & Critical Care Medicine, Johns Hopkins Medicine, Baltimore, MD, USA.

出版信息

Psychiatry Res. 2014 Dec 30;224(3):335-40. doi: 10.1016/j.pscychresns.2014.10.004. Epub 2014 Oct 14.

Abstract

Analysis of brain recurrence (ABR) is a novel computational method that uses two variables for sleep depth and two for sleep fragmentation to quantify temporal changes in non-random brain electrical activity. We postulated that ABR of the sleep-staged EEG could identify an EEG signature specific for the presence of mental health symptoms. Using the Mental Health Inventory Questionnaire (MHI-5) as ground truth, psychological distress was assessed in a study cohort obtained from the Sleep Heart Health Study. Subjects with MHI-5 <50 (N=34) were matched for sex, BMI, age, and race with 34 subjects who had MHI-5 scores >50. Sixteen ABR markers derived from the EEG were analyzed using linear discriminant analysis to identify marker combinations that reliably classified individual subjects. A biomarker function computed from 12 of the markers accurately classified the subjects based on their MHI-5 scores (AUROC=82%). Use of additional markers did not improve classification accuracy. Subgroup analysis (20 highest and 20 lowest MHI-5 scores) improved classification accuracy (AUROC=89%). Biomarker values for individual subjects were significantly correlated with MHI-5 score (r=0.36, 0.54 for N=68, 40, respectively). ABR of EEGs obtained during sleep successfully classified subjects with regard to the severity of mental health symptoms, indicating that mood systems were reflected in brain electrical activity.

摘要

脑复发分析(ABR)是一种新的计算方法,它使用两个变量来表示睡眠深度,两个变量来表示睡眠碎片化,以量化非随机脑电活动的时间变化。我们假设睡眠分期脑电图的 ABR 可以识别出特定心理健康症状存在的脑电图特征。使用心理健康量表问卷(MHI-5)作为基准,使用睡眠心脏健康研究中的研究队列评估了心理困扰。将 MHI-5<50(N=34)的受试者与 MHI-5>50 的 34 名受试者按性别、BMI、年龄和种族进行匹配。使用线性判别分析对从 EEG 中得出的 16 个 ABR 标记物进行分析,以识别可可靠分类个体受试者的标记物组合。根据其 MHI-5 评分,从 12 个标记物中计算出的生物标志物函数准确地对受试者进行分类(AUROC=82%)。使用更多标记物并不能提高分类准确性。亚组分析(MHI-5 评分最高和最低的 20 名受试者)提高了分类准确性(AUROC=89%)。个体受试者的生物标志物值与 MHI-5 评分显著相关(r=0.36,0.54,N=68,40)。睡眠期间获得的 EEG 的 ABR 成功地对心理健康症状严重程度的受试者进行了分类,表明情绪系统反映在脑电活动中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验