Tošić Tamara, Sellers Kristin K, Fröhlich Flavio, Fedotenkova Mariia, Beim Graben Peter, Hutt Axel
Team Neurosys, InriaVillers-lès-Nancy, France; Loria, Centre National de la Recherche Scientifique, UMR no 7503Villers-lès-Nancy, France; Université de Lorraine, Loria, UMR no 7503Villers-lès-Nancy, France.
Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina at Chapel HillChapel Hill, NC, USA.
Front Syst Neurosci. 2016 Jan 14;9:184. doi: 10.3389/fnsys.2015.00184. eCollection 2015.
For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.
几十年来,神经科学研究支持了这样一种假说:大脑动力学表现出由瞬态连接的反复出现的亚稳态,这些亚稳态共同编码基本的神经信息处理过程。为了理解系统的动力学,检测这种反复出现的区域很重要,但由于每次试验之间存在很大差异,从实验神经科学数据集中提取这些区域具有挑战性。所提出的方法通过将数据集转换为其时间频率表示,并基于各个频段的瞬时频谱功率值计算递归图,来提取单变量时间序列中的反复出现的亚稳态。此外,一种新的统计推断分析将不同试验的递归图与相应的替代数据进行比较,以获得具有统计显著性的反复出现的结构。通过将该方法应用于两个人工数据集,验证了这些方法的组合。在对部分麻醉的雪貂的视觉诱发局部场电位的最终研究中,该方法能够揭示具有每次试验差异的神经反应的反复出现的结构。聚焦于不同频段,δ频段活动的反复出现程度远低于α频段活动。此外,α活动对刺激前的状态敏感,而δ活动对刺激前的状态不太敏感。不同频段反复出现的结构中的这种差异表明大脑中存在不同的潜在信息处理步骤。