Suppr超能文献

人类跟腱在行走过程中的体内非均匀变形。

Non-uniform in vivo deformations of the human Achilles tendon during walking.

作者信息

Franz Jason R, Slane Laura C, Rasske Kristen, Thelen Darryl G

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States.

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.

出版信息

Gait Posture. 2015 Jan;41(1):192-7. doi: 10.1016/j.gaitpost.2014.10.001. Epub 2014 Oct 12.

Abstract

The free Achilles tendon (AT) consists of distinct fascicles arising from each of the triceps surae muscles that may give rise to non-uniform behavior during functional tasks such as walking. Here, we estimated in vivo deformations of the human AT during walking using simultaneous ultrasound and motion capture measurements. Ten subjects walked at three speeds (0.75, 1.00, and 1.25 m/s) on a force-measuring treadmill. A custom orthotic secured a linear array transducer in two locations: (1) the distal lateral gastrocnemius muscle-tendon junction and (2) the free AT, on average centered 6 cm superior to calcaneal insertion. We used motion capture to record lower extremity kinematics and the position and orientation of the ultrasound transducer. A 2D ultrasound elastography algorithm tracked superficial and deep tissue displacements within the free AT. We estimated AT elongation (i.e., change in length) relative to the calcaneal insertion by transforming the orthotic, transducer, and calcaneus kinematics into a common reference frame. Superficial and deep regions of the free AT underwent significantly different longitudinal displacements and elongations during walking. For example, we found that the superficial AT exhibited 16-29% greater peak elongation than the deep AT during the stance phase of walking (p < 0.01). Moreover, superficial-deep AT tissue deformations became less uniform with faster walking speed (p < 0.01). Non-uniform deformations of the free AT, which could reflect inter-fascicle sliding, may enable the gastrocnemius and soleus muscles to transmit their forces independently while allowing unique kinematic behavior at the muscle fiber level.

摘要

游离跟腱(AT)由来自小腿三头肌各部分的不同肌束组成,这可能导致在诸如行走等功能任务中出现不均匀的行为。在此,我们通过同步超声和运动捕捉测量来估计人类跟腱在行走过程中的体内变形情况。10名受试者在测力跑步机上以三种速度(0.75、1.00和1.25米/秒)行走。一种定制的矫形器将线性阵列换能器固定在两个位置:(1)腓肠肌外侧远端肌腱结合处,以及(2)游离跟腱,平均位于跟骨插入点上方6厘米处的中心位置。我们使用运动捕捉来记录下肢运动学以及超声换能器的位置和方向。一种二维超声弹性成像算法跟踪游离跟腱内浅表和深部组织的位移。我们通过将矫形器、换能器和跟骨的运动学转换到一个共同的参考系中,来估计相对于跟骨插入点的跟腱伸长(即长度变化)。游离跟腱的浅表和深部区域在行走过程中经历了显著不同的纵向位移和伸长。例如,我们发现,在行走的站立阶段,浅表跟腱的峰值伸长比深部跟腱大16% - 29%(p < 0.01)。此外,随着行走速度加快,浅表 - 深部跟腱组织变形变得不那么均匀(p < 0.01)。游离跟腱的不均匀变形可能反映了肌束间的滑动,这可能使腓肠肌和比目鱼肌能够独立传递其力量,同时允许在肌纤维水平出现独特的运动学行为。

相似文献

1
Non-uniform in vivo deformations of the human Achilles tendon during walking.
Gait Posture. 2015 Jan;41(1):192-7. doi: 10.1016/j.gaitpost.2014.10.001. Epub 2014 Oct 12.
2
Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking.
J Appl Physiol (1985). 2015 Aug 1;119(3):242-9. doi: 10.1152/japplphysiol.00114.2015. Epub 2015 May 28.
3
Triceps surae muscle-subtendon interaction differs between young and older adults.
Connect Tissue Res. 2020 Jan;61(1):104-113. doi: 10.1080/03008207.2019.1612384. Epub 2019 May 22.
4
Mechanical and neural function of triceps surae in elite racewalking.
J Appl Physiol (1985). 2016 Jul 1;121(1):101-5. doi: 10.1152/japplphysiol.00310.2016. Epub 2016 Jun 2.
5
Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading.
J Biomech. 2014 Sep 22;47(12):2831-5. doi: 10.1016/j.jbiomech.2014.07.032. Epub 2014 Aug 8.
6
Imaging and simulation of Achilles tendon dynamics: Implications for walking performance in the elderly.
J Biomech. 2016 Jun 14;49(9):1403-1410. doi: 10.1016/j.jbiomech.2016.04.032. Epub 2016 May 3.
7
Achilles Tendon Load is Progressively Increased with Reductions in Walking Speed.
Med Sci Sports Exerc. 2017 Oct;49(10):2001-2008. doi: 10.1249/MSS.0000000000001322.
10
The effects of Achilles tendon compliance on triceps surae mechanics and energetics in walking.
J Biomech. 2017 Jul 26;60:227-231. doi: 10.1016/j.jbiomech.2017.06.022. Epub 2017 Jun 29.

引用本文的文献

3
Shear wave propagation in the Achilles subtendons is modulated by helical twist and non-uniform loading.
R Soc Open Sci. 2025 Jun 18;12(6):241058. doi: 10.1098/rsos.241058. eCollection 2025 Jun.
5
Subject-specific biomechanics influences tendon strains in patients with Achilles tendinopathy.
Sci Rep. 2025 Jan 7;15(1):1084. doi: 10.1038/s41598-024-84202-9.
7
and environments affect the storage and release of energy in tendons.
Front Physiol. 2024 Aug 1;15:1443675. doi: 10.3389/fphys.2024.1443675. eCollection 2024.
8
Toward a wearable monitor of local muscle fatigue during electrical muscle stimulation using tissue Doppler imaging.
Wearable Technol. 2022 Jul 20;3:e16. doi: 10.1017/wtc.2022.10. eCollection 2022.
9
Immediate and Short-Term Effects of In-Shoe Heel-Lift Orthoses on Clinical and Biomechanical Outcomes in Patients With Insertional Achilles Tendinopathy.
Orthop J Sports Med. 2024 Feb 7;12(2):23259671231221583. doi: 10.1177/23259671231221583. eCollection 2024 Feb.
10
Achilles tendon and triceps surae muscle properties in athletes.
Eur J Appl Physiol. 2024 Feb;124(2):633-647. doi: 10.1007/s00421-023-05348-4. Epub 2023 Nov 11.

本文引用的文献

1
Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading.
J Biomech. 2014 Sep 22;47(12):2831-5. doi: 10.1016/j.jbiomech.2014.07.032. Epub 2014 Aug 8.
2
The use of 2D ultrasound elastography for measuring tendon motion and strain.
J Biomech. 2014 Feb 7;47(3):750-4. doi: 10.1016/j.jbiomech.2013.11.023. Epub 2013 Nov 28.
3
The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking.
Gait Posture. 2013 Sep;38(4):993-7. doi: 10.1016/j.gaitpost.2013.05.009. Epub 2013 Jun 17.
4
Ankle morphology amplifies calcaneus movement relative to triceps surae muscle shortening.
J Appl Physiol (1985). 2013 Aug 15;115(4):468-73. doi: 10.1152/japplphysiol.00395.2013. Epub 2013 Jun 6.
6
Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography.
J Biomech. 2012 Oct 11;45(15):2618-23. doi: 10.1016/j.jbiomech.2012.08.001. Epub 2012 Aug 28.
7
Influence of calcaneus angle and muscle forces on strain distribution in the human Achilles tendon.
Clin Biomech (Bristol). 2012 Nov;27(9):955-61. doi: 10.1016/j.clinbiomech.2012.07.001. Epub 2012 Aug 9.
8
Muscle gearing during isotonic and isokinetic movements in the ankle plantarflexors.
Eur J Appl Physiol. 2013 Feb;113(2):437-47. doi: 10.1007/s00421-012-2448-z. Epub 2012 Jul 10.
9
Tendon material properties vary and are interdependent among turkey hindlimb muscles.
J Exp Biol. 2012 Oct 15;215(Pt 20):3552-8. doi: 10.1242/jeb.072728. Epub 2012 Jul 5.
10
Specialization of tendon mechanical properties results from interfascicular differences.
J R Soc Interface. 2012 Nov 7;9(76):3108-17. doi: 10.1098/rsif.2012.0362. Epub 2012 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验