Eugster Philippe J, Boccard Julien, Debrus Benjamin, Bréant Lise, Wolfender Jean-Luc, Martel Sophie, Carrupt Pierre-Alain
Phytochemistry. 2014 Dec;108:196-207. doi: 10.1016/j.phytochem.2014.10.005.
The detection and early identification of natural products (NPs) for dereplication purposes require efficient, high-resolution methods for the profiling of crude natural extracts. This task is difficult because of the high number of NPs in these complex biological matrices and because of their very high chemical diversity. Metabolite profiling using ultra-high pressure liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HR-MS) is very efficient for the separation of complex mixtures and provides molecular formula information as a first step in dereplication. This structural information alone or even combined with chemotaxonomic information is often not sufficient for unambiguous metabolite identification. In this study, a representative set of 260 NPs containing C, H, and O atoms only was analysed in generic UHPLC–HR-MS profiling conditions. Two easy to use quantitative structure retention relationship (QSRR) models were built based on the measured retention time and on eight simple physicochemical parameters calculated from the structures. First, an original approach using several partial least square (PLS) regressions according to the phytochemical classes provided satisfactory results with an easy calculation. Secondly, a unique artificial neural network (ANN) model provided similar results on the whole set of NPs but required dedicated software. The retention prediction methods described in this study were found to improve the level of confidence of the identification of given analytes among putative isomeric structures. Its applicability was verified for the dereplication of NPs in model plant extracts.
为了进行天然产物的去重复分析,天然产物(NPs)的检测和早期鉴定需要高效、高分辨率的方法来分析粗制天然提取物的谱图。这项任务具有挑战性,因为这些复杂生物基质中存在大量的天然产物,并且它们具有高度的化学多样性。使用超高压液相色谱与高分辨率质谱联用(UHPLC–HR-MS)进行代谢物谱分析对于分离复杂混合物非常有效,并作为去重复分析的第一步提供分子式信息。仅靠这些结构信息,甚至与化学分类信息结合起来,通常也不足以明确鉴定代谢物。在本研究中,在通用的UHPLC–HR-MS谱图分析条件下,对一组仅含碳、氢和氧原子的260种代表性天然产物进行了分析。基于测得的保留时间和从结构计算出的八个简单物理化学参数,建立了两个易于使用的定量结构保留关系(QSRR)模型。首先,一种根据植物化学类别使用多个偏最小二乘(PLS)回归的原始方法,计算简便,结果令人满意。其次,一个独特的人工神经网络(ANN)模型对整个天然产物集给出了类似的结果,但需要专用软件。本研究中描述的保留预测方法被发现可以提高在假定的异构体结构中鉴定给定分析物的置信度。其在模型植物提取物中天然产物去重复分析的适用性得到了验证。