Matz Alexandre, Halamoda-Kenzaoui Blanka, Hamelin Romain, Mosser Sebastien, Alattia Jean-René, Dimitrov Mitko, Moniatte Marc, Fraering Patrick C
Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
J Neurochem. 2015 May;133(3):409-21. doi: 10.1111/jnc.12996. Epub 2015 Feb 24.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ-secretase is responsible for the intramembrane proteolysis of the amyloid-β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ-secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post-translational modification known to modulate the activity of many different enzymes, we used electrospray (LC-MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ-secretase. We identified 11 new single or double phosphosites in two well-defined domains of Presenilin-1 (PS1), the catalytic subunit of the γ-secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ-secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ-secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD. In this study, we identified 11 new phosphosites in Presenilin-1 (PS1), the catalytic subunit of the Alzheimer's γ-secretase complex. By combining a mutagenesis approach with cell-based and cell-free γ-secretase assays, we demonstrate that the new phosphosites do not modulate the maturation and activity of γ-secretase. Individual PS1 phosphosites shall thus not be considered therapeutic targets for reducing cerebral Aβ plaque formation in Alzheimer's Disease. Aβ, amyloid beta.
阿尔茨海默病(AD)的一个重要病理标志是β-淀粉样蛋白(Aβ)肽在脑实质中的沉积,这会导致神经元死亡以及学习和记忆受损。蛋白酶γ-分泌酶负责淀粉样前体蛋白(APP)的膜内蛋白水解,从而导致产生有毒的Aβ肽。因此,一种有吸引力的治疗AD的策略是调节γ-分泌酶的活性,以减少Aβ42的产生。由于蛋白质磷酸化是一种已知可调节许多不同酶活性的翻译后修饰,我们使用电喷雾(LC-MS/MS)质谱法来鉴定高度纯化的人γ-分泌酶上的新磷酸化位点。我们在γ-分泌酶复合物的催化亚基早老素-1(PS1)的两个明确结构域中鉴定出11个新的单磷酸化或双磷酸化位点。接下来,采用诱变和生化方法来研究每个磷酸化位点在γ-分泌酶成熟和活性中的作用。总之,我们的结果表明,PS1中新鉴定的磷酸化位点不会调节γ-分泌酶的活性以及阿尔茨海默病Aβ肽的产生。单个PS1磷酸化位点可能不应被视为减少AD中脑Aβ斑块形成的治疗靶点。在本研究中,我们在阿尔茨海默病γ-分泌酶复合物的催化亚基早老素-1(PS1)中鉴定出11个新的磷酸化位点。通过将诱变方法与基于细胞和无细胞的γ-分泌酶测定相结合,我们证明这些新的磷酸化位点不会调节γ-分泌酶的成熟和活性。因此,单个PS1磷酸化位点不应被视为减少阿尔茨海默病中脑Aβ斑块形成的治疗靶点。Aβ,β-淀粉样蛋白