Suppr超能文献

利用活体生物电子鼻检测和分类天然气味。

Detection and classification of natural odors with an in vivo bioelectronic nose.

机构信息

Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.

Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Biosens Bioelectron. 2015 May 15;67:694-9. doi: 10.1016/j.bios.2014.09.102. Epub 2014 Oct 28.

Abstract

The mammalian olfactory system is recognized as one of the most effective chemosensing systems. We thus investigated the potential of utilizing the rat's olfactory system to detect odors. By chronically coupling multiple microelectrodes to olfactory bulb of behaving rats, we extract an array of mitral/tufted cells (M/Ts) which could generate odor-specific temporal patterns of neural discharge. We performed multidimensional analysis of recorded M/Ts, finding that natural odors released from different fruit lead to distinct odor response patterns. Thus an array of M/Ts carried sufficient information to discriminate odors. This novel brain-machine interface using rat's olfaction presents a promising method for odor detection and discrimination, and it is the first step towards in vivo bioelectronic nose equipped with biological olfaction and artificial devices.

摘要

哺乳动物的嗅觉系统被认为是最有效的化学感应系统之一。因此,我们研究了利用大鼠嗅觉系统检测气味的潜力。通过将多个微电极长期耦合到行为大鼠的嗅球,我们提取了一系列可以产生气味特异性神经放电时间模式的嗅球神经元(M/Ts)。我们对记录的 M/Ts 进行了多维分析,发现来自不同水果的天然气味会导致不同的气味反应模式。因此,一系列 M/Ts 携带了足够的信息来区分气味。这种使用大鼠嗅觉的新型脑机接口为气味检测和识别提供了一种很有前途的方法,这也是朝着配备生物嗅觉和人工设备的活体生物电子鼻迈出的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验