Devaux J J
Centre de recherche en neurobiologie et neurophysiologie de Marseille, faculté de médecine secteur Nord, Aix-Marseille université, CNRS-UMR7286, 51, boulevard Pierre-Dramard, CS80011, 13344 Marseille cedex 15, France.
Rev Neurol (Paris). 2014 Dec;170(12):819-24. doi: 10.1016/j.neurol.2014.03.017. Epub 2014 Nov 20.
Myelin plays a crucial role in the rapid and saltatory conduction of the nerve impulse along myelinated axons. In addition, myelin closely regulates the organization of the axonal compartments. This organization involves several complex mechanisms including axo-glial contact, diffusion barriers, the cytoskeletal network, and the extracellular matrix. In peripheral nerves, the axo-glial contact dictates the formation of the nodes and the clustering of the voltage-gated sodium channels (Nav). The axo-glial contact at nodes implicates adhesion molecules expressed by the Schwann cell (gliomedin and NrCAM), which binds a partner, neurofascin-186, on the axonal side. This complex is essential for the recruitment of ankyrin-G, a cytoskeletal scaffolding protein, which binds and concentrates Nav channels at nodes. The paranodal junctions flanking the nodes also play a complementary function in node formation. These junctions are formed by the association of contactin-1/caspr-1/neurofascin-155 and create a diffusion barrier, which traps proteins at the nodes and dampens their diffusion along the internode. In the central nervous system, the mechanisms of node formation are different and the formation of the paranodal junctions precedes the aggregation of Nav channels at nodes. However, node formation can still happen in absence of paranodal junctions in the CNS. One explanation is that NF186 interacts with components of the extracellular matrix around the node and thereby stabilizes the aggregation of nodal proteins. It is likely that many other proteins are also implicated in the signaling pathways that regulate the differentiation of the axonal compartments. The nature and function of these proteins are yet to be identified.
髓磷脂在神经冲动沿有髓轴突的快速跳跃式传导中起着至关重要的作用。此外,髓磷脂密切调节轴突区室的组织。这种组织涉及多种复杂机制,包括轴突-胶质细胞接触、扩散屏障、细胞骨架网络和细胞外基质。在周围神经中,轴突-胶质细胞接触决定了郎飞结的形成以及电压门控钠通道(Nav)的聚集。郎飞结处的轴突-胶质细胞接触涉及施万细胞表达的黏附分子(神经胶质素和NrCAM),其在轴突一侧与伴侣神经束蛋白-186结合。这种复合物对于锚蛋白-G的募集至关重要,锚蛋白-G是一种细胞骨架支架蛋白,它在郎飞结处结合并聚集Nav通道。郎飞结两侧的旁结也在结的形成中发挥互补作用。这些连接由接触蛋白-1/接触蛋白相关蛋白-1/神经束蛋白-155的结合形成,并形成一个扩散屏障,该屏障将蛋白质捕获在结处并抑制其沿节间的扩散。在中枢神经系统中,结形成的机制不同,旁结的形成先于Nav通道在结处的聚集。然而,在中枢神经系统中,没有旁结时结的形成仍然可以发生。一种解释是NF186与结周围细胞外基质的成分相互作用,从而稳定结蛋白的聚集。很可能许多其他蛋白质也参与了调节轴突区室分化的信号通路。这些蛋白质的性质和功能尚待确定。