Dukart Juergen, Bertolino Alessandro
F. Hoffmann-La Roche, pRED, Pharma Research and Early Development, NORD DTA, Grenzacherstrasse 124, 4070 Basel, Switzerland; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
F. Hoffmann-La Roche, pRED, Pharma Research and Early Development, NORD DTA, Grenzacherstrasse 124, 4070 Basel, Switzerland; Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy.
PLoS One. 2014 Dec 2;9(12):e114227. doi: 10.1371/journal.pone.0114227. eCollection 2014.
Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.
功能磁共振成像以及最近的静息态磁共振成像都已成为研究功能性脑网络的既定工具。大多数研究使用这些工具来比较不同人群,却未控制潜在的脑结构差异,而这些差异可能会影响感兴趣的功能测量。在此,我们采用一种模拟方法并结合对真实静息态磁共振成像数据的评估,以研究部分容积效应 对既定的功能磁共振成像和静息态磁共振成像分析的潜在影响。我们证明,基础结构的差异会导致在这两种分析类型中检测到的功能差异显著增加。对于最高信噪比以及将具有最低部分容积效应量的信号与任何其他部分容积效应组合进行比较时,功能差异的增加最为显著。在实际数据中,结构信息解释了在度中心性(一种既定的静息态连接性测量)中观察到的约25%的个体内方差。针对结构信息对该测量进行控制可显著改变在组分析中获得的相关图谱。我们的结果对当前在已知结构变化的患病群体中评估这些测量而不控制这些测量中潜在差异的方法提出了质疑。