Division of Dermatology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA.
Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
Nanomedicine. 2015 Feb;11(2):283-91. doi: 10.1016/j.nano.2014.09.017. Epub 2014 Nov 15.
UNLABELLED: Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. FROM THE CLINICAL EDITOR: This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system.
未加标签:一氧化氮(NO)是先天免疫系统的重要介质,具有多种抗菌机制。先前的研究表明,由于形成转硝化试剂 S-亚硝基谷胱甘肽(GSNO),释放一氧化氮的纳米颗粒(NO-np)与谷胱甘肽(GSH)联合使用时,表现出增强的抗菌活性。为了利用这一发现,我们将含有巯基的 ACE 抑制剂卡托普利与 NO-np 结合形成 SNO-CAP-np,这种纳米颗粒既能释放一氧化氮又能形成 S-亚硝基卡托普利。在 GSH 的存在下,SNO-CAP-np 表现出比 NO-np 更高的转硝化活性,这表现为 GSNO 的形成增加。大肠埃希菌和耐甲氧西林金黄色葡萄球菌对 SNO-CAP-np 的敏感性呈剂量依赖性,大肠埃希菌最敏感,并且在可转译浓度下 SNO-CAP-np 在斑马鱼胚胎中没有毒性。鉴于 SNO-CAP-np 的转硝化活性增加和对大肠埃希菌的敏感性增加,与 NO-np 相比,转硝化而非游离的一氧化氮可能是克服大肠埃希菌的耐药机制并最终杀死病原体的原因。
FROM THE CLINICAL EDITOR:本研究小组将含有巯基的 ACE 抑制剂卡托普利纳入一氧化氮释放纳米颗粒系统中,生成既能释放一氧化氮又能形成 S-亚硝基卡托普利的纳米颗粒,在提出的模型系统中对耐甲氧西林金黄色葡萄球菌和大肠埃希菌具有明显的毒性作用。
Adv Drug Deliv Rev. 2013-7-24
Mater Today Bio. 2022-9-6
Mater Today Bio. 2022-9-6
Adv Healthc Mater. 2018-5-14
Antioxid Redox Signal. 2017-5-10
J Neuroimmune Pharmacol. 2017-3
Adv Drug Deliv Rev. 2013-7-24
Methods Mol Biol. 2011